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2.1 MATHEMATICS
by C. Edward Sandifer

REFERENCES: Conte and DeBoor, ‘‘Elementary Numerical Analysis: An Algo-
rithmic Approach,”” McGraw-Hill. Boyce and DiPrima, ‘‘ Elementary Differential
Equations and Boundary Vaue Problems,”” Wiley. Hamming, ‘‘Numerical Meth-
ods for Scientists and Engineers,”” McGraw-Hill. Kreyszig, ‘‘Advanced Engi-
neering Mathematics,”” Wiley.

SETS, NUMBERS, AND ARITHMETIC

Sets and Elements

The concept of a set appears throughout modern mathematics. A set isa
well-defined list or collection of objects and is generally denoted by
capital letters, A, B, C, . . . . The objects composing the set are called
elements and are denoted by lowercase letters, a, b, X, y, . . . . The
notation

XEA

isread ‘*x is an element of A"’ and means that X is one of the objects
composing the set A.

There are two basic ways to describe a set. Thefirst way isto list the
elements of the set.

A={24,6,8, 10}

This often is not practical for very large sets.
The second way is to describe properties which determine the ele-
ments of the set.

A = {even numbers from 2 to 10}

This method is sometimes awkward since a single set may sometimes
be described in several different ways.
In describing sets, the symbol : isread ‘‘such that.”” The expression

B = {x:xisan eveninteger, x > 1, x < 11}

isread ‘B equals the set of al x such that X is an even integer, x is
greater than 1, and x is less than 11.”’

Two sets, A and B, are equal, written A = B, if they contain exactly
the same elements. The sets A and B above are equal. If two sets, X and
Y, are not equal, it is written X # .

Subsets A set C is a subset of a set A, written C C A, if each
element in Cisalso anelement in A. It isalso said that C is contained in
A. Any setisasubset of itself. Thatis, A C Aaways. Aissaid to bean
“‘improper subset of itself.”” Otherwise, if C C Aand C # A, thenCisa
proper subset of A.

Two theorems are important about subsets:

(Fundamental theorem of set equality)

fXCY ad YCX thenX=Y (211

(Transitivity)

fXCY ad YCZ thenXcz (212

Universe and Empty Set In an application of set theory, it often
happens that all sets being considered are subsets of some fixed set, say
integers or vectors. Thisfixed set is called the universe and is sometimes
denoted U.

It is possible that a set contains no elements at all. The set with no
elements is called the empty set or the null set and is denoted &.

Set Operations New sets may be built from given sets in several
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ways. The union of two sets, denoted A U B, is the set of al elements
belonging to A or to B, or to both.

AUB={x:x€A o x€B}
The union has the properties:

ACAUB ad BCAUB (2.1.3)

The intersection isdenoted A N B and consists of all elements, each of
which belongs to both A and B.

ANB={x:x€A and x€&€B}
The intersection has the properties
ANBCA and ANBCB

If AN B = &, then A and B are caled digjoint.

In general, a union makes a larger set and an intersection makes a
smaller set.

The complement of aset Aisthe set of all elementsin the universe set
which are not in A. Thisis written

TA={x:xeuU, x&A}

The difference of two sets, denoted A — B, isthe set of al elements
which belong to A but do not belong to B.

Algebra on Sets  The operations of union, intersection, and comple-
ment obey certain laws known as Boolean algebra. Using theselaws, itis
possible to convert an expression involving sets into other eguivalent
expressions. The laws of Boolean algebra are given in[Table ZT.T]

Venn Diagrams To give a pictorial representation of a set, Venn
diagrams are often used. Regions in the plane are used to correspond to
sets, and areas are shaded to indicate unions, intersections, and comple-
ments. Examples of Venn diagrams are given in[Elg—2TT1

(2.1.4)

Numbers

Numbers are the basic instruments of computation. It is by operations
on numbers that calculations are made. There are several different kinds
of numbers.

Natural numbers, or counting numbers, denoted N, are the whole
numbers greater than zero. Sometimes zero is included as a natural
number. Any two natural numbers may be added or multiplied to give

Table 2.1.1 Laws of Boolean Algebra

1. Idempotency
AUA=A
2. Associativity
(AUB)UC=AUBUC)
3. Commutativity

ANA=A

(ANB)NC=ANBNC)

AUB=BUA ANB=BNA
4. Distributivity

AUBNC)=AUB N(AUC) ANBUC)=ANBYUMANC)
5. Identity

AU =A ANU=A

AUU=U AND =0
6. Complement

AUTA=U ANTA=0

(A=A

u=¢g

“g=U

7. DeMorgan’s laws

~(AUB)="AN"~B ~(ANB)="~"AU~B
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Fig. 2.1.1 Venn diagrams.

another natural number, but subtracting them may produce a negative
number, which is not a natural number, and dividing them may produce
afraction, which is not a natural number.

Integers, or whole numbers, are denoted by Z. They include both
positive and negative numbers and zero. Integers may be added, sub-
tracted, and multiplied, but division might not produce an integer.

Real numbers, denoted R, are essentialy all values which it is possi-
ble for ameasurement to take, or all possible lengths for line segments.
Rational numbers are real numbers that are the quotient of two integers,
for example, *¥7s. Irrational number s are not the quotient of two integers,
for example, 7 and V2. Within the real numbers, it is always possible to
add, subtract, multiply, and divide (except division by zero).

Complex numbers, or imaginary numbers, denoted C, are an extension
of the real numbers that include the square root of — 1, denoted i.
Within the real numbers, only positive numbers have sguare roots.
Within the complex numbers, all numbers have square roots.

Any complex number z can bewritten uniquely asz = x + iy, wherex
and y are real. Then x is the real part of z, denoted Re(2), and y is the
imaginary part, denoted Im(2).

The complex conjugate, or simply conjugate of acomplex number, zis

=X—iy.

If z=x+iyandw = u + iv, then zand w may be manipulated as
follows:

z+w=(X+u +i(y+v)

zZ—w=(X—u) +i(y—v)
ZW = XU — W + i(xv + yu)
Eixu+yv+i(yu—xv)
w o u2 + v2

As sets, the following relation exists among these different kinds of
numbers:

NCZCRCC

Functions

A function f isarulethat relates two sets A and B. Given an element x of
the set A, the function assigns a unique element y from the set B. Thisis
written

y="f(x

The set A is called the domain of the function, and the set B is called
therange. It is possible for A and B to be the same set.
Functions are usually described by giving the rule. For example,

f(x) =3+ 4

isarule for afunction with range and domain both equal to R. Given a
value, say, 2, from the domain, f(2) = 3(2) + 4 = 10.
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If two functions f and g have the same range and domain and if the
ranges are numbers, then f and g may be added, subtracted, multiplied,
or divided according to the rules of the range. If f(x) = 3x + 4 and
g(x) = sin(x) and both have range and domain equal to R, then

f+g(x) =3x+ 4+ sin(x)

and —(x) =

Dividing functions occasionally leads to complications when one of
the functions assumes a value of zero. In the example f/g above, this
occurs when x = 0. The quotient cannot be evaluated for x = 0 although
the quotient function is still meaningful. In this case, the function f/g is
said to have apole at x = 0.

Polynomial functions are functions of the form

fx)=> ax
i=0
where a, # 0. The domain and range of polynomia functions are
always either R or C. The number n is the degree of the polynomial.

Polynomials of degree O or 1 are called linear; of degree 2 they are
called parabolic or quadratic; and of degree 3 they are called cubic.

The values of f for which f(x) = 0 are called the roots of f. A polyno-
mial of degree n has at most n roots. There is exactly one exception to
thisrule: If f(x) = 0isthe constant zero function, the degree of f iszero,
but f has infinitely many roots.

Roots of polynomials of degree 1 are found as follows: Suppose the
polynomial is f(x) = ax + b. Set f(x) = 0 and solve for x. Then
X = —bla.

Roots of polynomials of degree 2 are often found using the quadratic
formula. If f(x) = ax? + bx + c, then thetwo roots of f are given by the
quadratic formula:

_ —b++vb?—4ac and _ —b—+vb?—4ac
t 2a 2 2a
Roots of a polynomial of degree 3 fall into two types.
Equations of the Third Degree with Term in x? Absent
Solution: After dividing through by the coefficient of x3, any equa-
tion of this type can be written x3 = Ax + B. Letp = A/3and q =

B/2. The genera solution is as follows:
Casel. g2 — p® positive. Oneroot isreal, viz.,

X, = Vg + Vo2 — p3 + Vg — V@2 — p?

The other two roots are imaginary.
Case2. 2 — p® = zero. Threeroots real, but two of them equal.

¥ = 29
Case 3. 02 — p® negative. All three roots are real and distinct. De-
termine an angle u between 0 and 180°, such that cosu = g/(pvp). Then

X = —Vq Xg= g

X, = 2Vp cos (u/3)
X, = 2Vp cos (u/3 + 120°)
X3 = 2Vp cos (u/3 + 240°)

Graphical Solution: Plot the curve y; = x3, and the straight line
Yy, = Ax + B. The abscissas of the points of intersection will be the
roots of the equation.

Equations of the Third Degree (General Case)

Solution: The genera cubic equation, after dividing through by the
coefficient of the highest power, may be written x3 + ax2 + bx +
c = 0. To get rid of the term in x?, let X = x; — a/3. The equation
then becomes X3 = Ax; + B, where A = 3(a/3)2 — b, and B =
—2(a/3)% + b(a/3) — c. Solve this equation for x,, by the method
above, and then find x itself from x = x; — (a&/3).

Graphical Solution: Without getting rid of the term in x2, write the
equationintheformx® = — a[x + (b/2a)]2 + [a(b/2a)? — c], and solve
by the graphical method.
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Arithmetic

When numbers, functions, or vectors are manipul ated, they always obey
certain properties, regardless of the types of the objects involved. Ele-
ments may be added or subtracted only if they arein the same universe
set. Elements in different universes may sometimes be multiplied or
divided, but the result may be in a different universe. Regardless of the
universe sets involved, the following properties hold true:

1. Associativelaws. a + (b + ¢) = (a + b) + ¢, a(bc) = (ab)c

2. |dentity laws.0 + a=a,la=a

3. Inverselaws.a—a=0,ala=1

4. Distributive law. a(b + ¢) = ab + ac

5. Commutativelaws.a + b =b + a, ab = ba

Certain universes, for example, matrices, do not obey the commuta-
tive law for multiplication.

SIGNIFICANT FIGURES AND PRECISION

Number of Significant Figures In engineering computations, the
data are ordinarily the result of measurement and are correct only to a
limited number of significant figures. Each of the numbers 3.840 and
0.003840 issaid to begiven ‘‘ correct to four figures'’; thetruevaluelies
in thefirst case between 0.0038395 and 0.0038405. The absoluteerror is
less than 0.001 in the first case, and less than 0.000001 in the second;
but the relative error is the same in both cases, namely, an error of less
than ‘‘one part in 3,840."”

If a number is written as 384,000, the reader is left in doubt whether
the number of correct significant figuresis 3, 4, 5, or 6. This doubt can
be removed by writing the number as 3.84 X 105, or 3.840 X 105, or
3.8400 x 105, or 3.84000 X 10°.

In any numerica computation, the possible or desirable degree of
accuracy should be decided on and the computation should then be so
arranged that the required number of significant figures, and no more, is
secured. Carrying out the work to a larger number of places than is
justified by the datais to be avoided, (1) because the form of the results
leads to an erroneous impression of their accuracy and (2) because time
and labor are wasted in superfluous computation.

The unit value of the least significant figure in a number is its preci-
sion. The number 123.456 has six significant figures and has precision
0.001.

Two ways to represent areal number are as fixed-point or as floating-
point, also known as *‘ scientific notation.”’

In scientific notation, a number is represented as a product of a man-
tissa and a power of 10. The mantissa has its first significant figure
either immediately before or immediately after the decimal point, de-
pending on which convention is being used. The power of 10 used is
called the exponent. The number 123.456 may be represented as either

0.123456 X 10° or 1.23456 X 102

Fixed-point representations tend to be more convenient when the
quantities involved will be added or subtracted or when all measure-
ments are taken to the same precision. Floating-point representations
are more convenient for very large or very small numbers or when the
quantities involved will be multiplied or divided.

Many different numbers may share the same representation. For ex-
ample, 0.05 may be used to represent, with precision 0.01, any value
between 0.045000 and 0.054999. Thelargest value anumber represents,
in this case 0.0549999, is sometimes denoted x*, and the smallest is
denoted Xx,.

An awareness of precision and significant figuresis necessary so that
answers correctly represent their accuracy.

Multiplication and Division A product or quotient should be written
with the smallest number of significant figures of any of the factors
involved. The product often has a different precision than the factors,
but the significant figures must not increase.

EXAMPLES. (6.)(8.) = 48 should be written as 50 since the factors have one
significant figure. Thereis aloss of precision from 1 to 10.

0.6 X 0.8 = .048 should be written as 0.5 since the factors have one significant
figure. Thereis again of precision from 0.1 to 0.01.

Addition and Subtraction A sum or difference should be repre-
sented with the same precision as the least precise term involved. The
number of significant figures may change.

ExAMPLES. 3.14 + 0.001 = 3.141 should be represented as 3.14 since the
least precise term has precision 0.01.

3.14 + 0.1 = 3.24 should be represented as 3.2 since the least precise term has
precision 0.1.

Loss of Significant Figures Addition and subtraction may result in
seriousloss of significant figures and resultant large relative errorsif the
sums are near zero. For example,

315-314=10.01

shows a loss from three significant figures to just one. Where it is
possible, calculations and measurements should be planned so that 1oss
of significant figures can be avoided.

Mixed Calculations When an expression involves both products
and sums, significant figures and precision should be noted for each
term or factor as it is calculated, so that correct significant figures and
precision for the result are known. The cal culation should be performed
to asmuch precision asisavailable and should be rounded to the correct
precision when the calculation is finished. This process is frequently
done incorrectly, particularly when calculators or computers provide
many decimal placesin their result but provide no clue as to how many
of those figures are significant.

Significant Figures in Evaluating Functions If y = f(x), then the
correct number of significant figures in y depends on the number of
significant figures in x and on the behavior of the function f in the
neighborhood of x. In general, y should be represented so that all of f(x),
f(x*), and f(x,) are between y* and y,.

EXAMPLES.

sgr (2.0)  sgr (1.95) = 1.39642
sgr (2.00) = 1.41421
sgr (2.05) = 1.43178

soy=14
sin (1°) sin (0.5) = 0.00872
sin (1.0) = 0.01745
sin (1.5) = 0.02617

sosin (1°) = 0.0
sin (90°) sin (89.5) = 0.99996
sin (90.0) = 1.00000
sin (90.5) = 0.99996

so sin (90°) = 1.0000

Note that in finding sin (90°), there was a gain in significant figures
from two to five and also again in precision. Thistendsto happen when
f’(x) is close to zero. On the other hand, precision and significant
figures are often lost when f'(x) or f (x) are large.

Rearrangement of Formulas Often a formula may be rewritten in
order to avoid aloss of significant figures.

In using the quadratic formula to find the roots of a polynomial,
significant figures may be lost if the ax2 + bx + ¢ has aroot near zero.
The quadratic formula may be rearranged as follows:

1. Use the quadratic formula to find the root that is not close to 0.
Call thisroot x;.

2. Then x, = clax,.

If f(x) = VX + 1 — Vx, then loss of significant figures occurs if x is
large. This can be eliminated by ‘‘rationalizing the numerator’’ as fol-
lows:

(X+1-B)x+ 1+ _ 1
W+ 1+ VX W+ 1+ VX

and this has no loss of significant figures.



Copyright (C) 1999 by The McGraw-Hill Companies, Inc. All rights reserved. Use of
this product is subject to the terms of its License Agreement. |Click here to view

There is an almost unlimited number of ‘‘tricks’ for rearranging
formulas to avoid loss of significant figures, but many of these are very
similar to the tricks used in calculus to evaluate limits.

GEOMETRY, AREAS, AND VOLUMES

Geometrical Theorems

Right Triangles a2 + b2 = c2 (SedF1Q. ZL2) LA + £B = 90°.
p2 = mn. a2 = mc. b2 = nc.

Oblique Triangles Sum of angles = 180°. An exterior angle = sum
of the two opposite interior angles (EIg—ZT2].

Fig. 2.1.2 Right triangle.

The medians, joining each vertex with the middle point of the oppo-
site side, meet in the center of gravity G (E1g_Z.L.3]), which trisectseach
median.

(RN
P>~ N
I

~
~

Fig. 2.1.3 Triangle showing medians and center of gravity.

The altitudes meet in a point called the orthocenter, O.

The perpendiculars erected at the midpoints of the sides meet in a
point C, the center of the circumscribed circle. (Inany triangle G, O, and
Clieinline, and G is two-thirds of the way from O to C.)

The bisectors of the angles meet in the center of the inscribed circle

e

Fig. 2.1.4 Triangle showing bisectors of angles.

The largest side of atriangle is opposite the largest angle; it is less
than the sum of the other two sides.

Similar Figures Any two similar figures, in aplane or in space, can
be placed in ‘‘perspective,’’ i.e., so that straight lines joining corre-
sponding points of the two figures will pass through a common point
[EIg—27T3H). That is, of two similar figures, one is merely an enlarge-
ment of the other. Assume that each length in one figure is k times the
corresponding length in the other; then each areaiin the first figure is k2
times the corresponding areain the second, and each volumein the first
figure is k3 times the corresponding volume in the second. If two lines
are cut by a set of parallel lines (or parallel planes), the corresponding
segments are proportional.

Fig. 2.1.5 Similar figures.
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The Circle Ananglethat isinscribed in asemicircleisaright angle

(E1g. 2.1.6).

A tangent is perpendicular to the radius drawn to the point of contact.

Fig. 2.1.6 Angleinscribed in a Fig. 2.1.7 Dihedral angle.

semicircle.

Dihedral Angles The dihedral angle between two planes is mea-
sured by a plane angle formed by two lines, one in each plane, perpen-
dicular to the edge [Eig—217). (For solid angles, see Surfaces and
Volumes of Solids.)

In atetrahedron, or triangular pyramid, thefour medians, joining each
vertex with the center of gravity of the opposite face, meet in a point,
the center of gravity of the tetrahedron; this point is ¥ of the way from
any vertex to the center of gravity of the opposite face.

The Sphere (See also Surfaces and Volumes of Solids.) If ABisa
diameter, any plane perpendicular to AB cuts the sphere in acircle, of
which A and B are called the poles. A great circle on the sphere is
formed by a plane passing through the center.

Geometrical Constructions

To Bisect a Line AB [{EIg-2.1B) (1) From A and B as centers, and
with equal radii, describe arcs intersecting at P and Q, and draw PQ,
which will bisect AB in M. (2) Lay off AC = BD = approximately half
of AB, and then bisect CD.

)?(P

A
!
— _
A M8 | B\ /C
\/
} e i
Xa

Fig. 2.1.8 Bisectors of aline. Fig. 2.1.9 Construction of a

line parallel to agiven line.

To Draw a Parallel to a Given Line | through a Given Point A
[Eig—ZT39) With point A as center draw an arc just touching the line |;
with any point O of the line as center, draw an arc BC with the same
radius. Then a line through A touching this arc will be the required
parallel. Or, use a straightedge and triangle. Or, use a sheet of cellu-
loid with a set of lines parallel to one edge and about ¥4 in apart ruled
upon it.

To Draw a Perpendicular to a Given Line from a Given Point A Out-
side the Line [{FIg—2.1.710) (1) With A as center, describe an arc cutting
the line a R and S and bisect RS a M. Then M is the foot of the
perpendicular. (2) If Ais nearly opposite one end of the line, take any
point B of the line and bisect AB in O; then with O as center, and OA or
OB as radius, draw an arc cutting the line in M. Or, (3) use a straight-
edge and triangle.

e
‘ ~~
| (, P
R :M S M\ X B
T>'K (a) (b)

Fig.2.1.10 Construction of aline perpendicular to agiven line from a point not
on theline.

To Erect a Perpendicular to a Given Line at a Given Point P (1) Lay
off PR = PSOEQ—ZTTI), and with R and S as centers draw arcs



Copyright (C) 1999 by The McGraw-Hill Companies, Inc. All rights reserved. Use of
this product is subject to the terms of its License Agreement. |Click here to view

2-6  MATHEMATICS

intersecting at A. Then PA istherequired perpendicular. (2) If P isnear
the end of the line, take any convenient point O (Eig—21.12) above the
line as center, and with radius OP draw an arc cutting the line a Q.
Produce QO to meet the arc at A; then PA isthe required perpendicular.
(3) Lay off PB = 4 units of any scale [Elg—Z1.13); from P and B as
centers lay off PA = 3 and BA = 5; then APB is aright angle.

P\ /Q
R P s ~—
Fig. 2.1.11 Construction of a
line perpendicular to a given line
from a point on the line.

Fig. 2.1.12 Construction of a
line perpendicular to agiven line
from a point on the line.

To Divide a Line ABinto nEqual Parts [Fig.-2.1.14) Through A draw
aline AX at any angle, and lay off n equal stepsalong thisline. Connect
the last of these divisions with B, and draw parallels through the other
divisions. These parallels will divide the given lineinto n equal parts. A
similar method may be used to divide a line into parts which shall be
proportional to any given numbers.

To Bisect an Angle AOB [(EIg. Z.1.75) Lay off OA = OB. From A
and B as centers, with any convenient radius, draw arcs meeting at M;
then OM is the required bisector.

p 4 B A B
Fig. 2.1.13 Construction of a Fig. 2.1.14 Division of aline
line perpendicular to a given line into equal parts.
from a point on the line.

To draw the bisector of an angle when the vertex of the angle is not
accessible. Parallel to the given lines a, b, and equidistant from them,
draw two lines @', b’ which intersect; then bisect the angle between a’
and b'.

To Inscribe a Hexagon in a Circle [(FIg_2116) Step around the
circumference with a chord equal to the radius. Or, use a 60° triangle.

Fig. 2.1.15 Bisection of an Fig. 2.1.16 Hexagon inscribed
angle. inacircle.

To Circumscribe a Hexagon about a Circle [{FQ. 2.1.11) Draw a
chord AB egual to the radius. Bisect the arc AB at T. Draw the tangent at
T (paralel to AB), meeting OA and OB at P and Q. Then draw acircle
with radius OP or OQ and inscribein it a hexagon, one side being PQ.

To Construct a Polygon of n Sides, One Side AB Being Given [E1Ql]

[Z118) With A as center and AB asradius, draw asemicircle, and divide
it into n parts, of which n — 2 parts (counting from B) are to be used.
Draw rays from A through these points of division, and complete the
construction asin thefigure (in which n = 7). Note that the center of the
polygon must lie in the perpendicular bisector of each side.

To Draw a Tangent to a Circle from an externa point A [(ELQ]

[ZTT9) Bisect AC in M; with M as center and radius MC, draw arc
cutting circle in P; then P is the required point of tangency.

Fig. 2.1.17 Hexagon
circumscribed about a circle.

Fig. 2.1.18 Construction of a
polygon with a given side.

To Draw a Common Tangent to Two Given Circles [(F1g. 2.1.20]
Let C and ¢ be centersand Rand r theradii (R > r). From C as center,
draw two concentric circleswith radii R + r and R — r; draw tangentsto

M A

Fig. 2.1.20 Construction of a

Fig. 2.1.19 Construction of a 8
tangent common to two circles.

tangent to acircle.

these circles from c; then draw parallels to these lines at distance r.
These parallels will be the required common tangents.

To Draw a Circle through Three Given Points A, B, C, or tofind the
center of a given circular arc (E1g.Z.1.2T) Draw the perpendicular bi-
sectors of AB and BC; these will meet at the center, O.

AR
B

Fig. 2.1.21 Construction of a circle passing through three given points.

To Draw a Circle through Two Given Points A, B, and Touching a
Given Circle Draw any circle through A and B, cutting
the given circle at C and D. Let AB and CD meet at E, and let ET be
tangent from E to the circle just drawn. With E as center, and radius ET,
draw an arc cutting the given circle at P and Q. Either P or Q is the
required point of contact. (Two solutions.)

/*\

@

Fig. 2.1.22 Construction of a circle through two given points and touching a
given circle.

To Draw a Circle through One Given Point, A, and Touching Two
Given CirclesCTEIG—2T23) Let Sbe acenter of similitude for the two
given circles, i.e., the point of intersection of two externa (or internal)
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common tangents. Through S draw any line cutting one circle at two
points, the nearer of which shall be called P, and the other at two points,
the more remote of which shall be called Q. Through A, P, Q draw a
circle cutting SA a B. Then draw acircle through A and B and touching
one of the given circles (see preceding construction). This circle will
touch the other given circle also. (Four solutions.)

Fig. 2.1.23 Construction of a circle through a given point and touching two
given circles.

To Draw an Annulus Which Shall Contain a Given Number of Equal
Contiguous Circlesl (Fig. 2.1.24) (An annulus is a ring-shaped area
enclosed between two concentric circles.) Let R + r and R — r be the
inner and outer radii of the annulus, r being the radius of each of then
circles. Then the required relation between these quantities is given by
r = Rsin (180°/n), or r = (R + r) [sin (180°/n)]/[1 + sin (180°/n)].

Q~

Fig. 2.1.24 Construction of an annulus containing a given number of contigu-
ous circles.

Lengths and Areas of Plane Figures

Right Triangle a2+ b2? = c2 Area= ¥.ab = ¥2a? cot
A = ¥2b2tan A = Yac2sin 2A. -~
Equilateral Triangle KEQ—2-1t26) Area = ¥%a2/3 = 0.43301a2

A
B a ¢ a
Fig. 2.1.25 Right triangle. Fig. 2.1.26 Equilateral triangle.

Any Triangle
s=Y(@a+b+c),t=¥ml+m2+ m3)
r = V(s — a)(s — b)(s — c)/s = radius inscribed circle
R = Y%2alsin A = ¥%:b/sin B = ¥2c/sin C = radius circumscribed
circle
Area = ¥ base X dltitude = ¥2ah = ¥2ab sin C = rs = abc/4R =

YA (X Y2 — X2 VD) + (X2 V5 — XgV2) + (X3 Y1 — X1 Ya)},
where (Xq, Y1), (X2, ¥2), (X3, Y3) are coordinates of vertices.

A

B C
Fig. 2.1.27 Triangle.
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Rectangle [TEIJr2128) Area = ab = ¥2D? sin u, where u = angle
between diagonals D, D.

Rhombus [{F1g.2.1.29) Area = a2 sin C = ¥.D,D,, where C =
angle between two adjacent sides; D,, D, = diagonals.

Q .-

Fig. 2.1.28 Rectangle. Fig. 2.1.29 Rhombus.

Parallelogram [IEIG—21.30) Area = bh = absinC = ¥2D,D, sinu,
where u = angle between diagonals D, and D,,.

Trapezoid (IFIYr21:31) Area = ¥2(a + b) hwherebasesaand b are
parallel.

a
b
a / 1h \
]
b

Fig. 2.1.31 Trapezoid.

Fig. 2.1.30 Parallelogram.

Any Quadrilateral OEG—Z132) Area= ¥2D,D, sin u.

Fig. 2.1.32 Quadrilateral.

Regular Polygons n = number of sides; v = 360°/n = angle sub-
tended at center by one side; a = length of one side = 2R sin
(v/2) = 2r tan (v/2); R = radius of circumscribed circle = 0.5 a csc
(V/2) = r sec (V/2); r = radius of inscribed circle = R cos (v/2) =
0.5 cot (v/2); area = 0.25 a?n cot (V/2) = 0.5 R?n sin (v) = r2n
tan (v/2). Areas of regular polygons are tabulated in Table 1.1.3.

Circle Area= 7r2 = ¥%Cr = ¥4Cd = ¥amd? = 0.785398d2, where
r = radius, d = diameter, C = circumference = 2 ot = 7rd.

Annulus [[FQ—Z2133) Area = w(R? — r?) = 7w(D? — d?9/4 =
27R'b, where R" = meanradius = ¥2(R + r),andb =R —r.

€

Sector (TEIG—21732) Area = Yars = 7t 2A/360° = ¥2r2rad A, where
rad A = radian measure of angle A, and s = length of arc = r

rad A.
8 :J
)

Fig. 2.1.33 Annulus.

Fig. 2.1.34  Sector.
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Segment (EQ—2135) Area = Yarq(rad A — sin A) = Y2[r(s —
¢) + ch], where rad A radian measure of angle A. For small arcs,
s = ¥3(8c’ — c), wherec’ = chord of half of the arc (Huygens' approx-
imation). Areas of segments are tabulated in Tables 1.1.1 and 1.1.2.

Fig. 2.1.35 Segment.

Ribbon bounded by two parallel curve§{Fig. 2.1.36). If a straight
line AB moves so that it is always perpendicular to the path traced by its
middle point G, then the area of the ribbon or strip thus generated is
equal to the length of AB times the length of the path traced by G. (Itis
assumed that the radius of curvature of G’spath is never lessthan ¥2AB,
so that successive positions of generating line will not intersect.)

DO

Fig. 2.1.36 Ribbon.

Ellipse [(FIg_2.137) Area of elipse = mab. Area of shaded
segment = xy + ab sin—! (x/a). Length of perimeter of ellipse =
m(a + b)K, where K = (1 + ¥am2 + Yeam?* + Yosem® + . . ), m =
(a — b)/(a + b).

Form=0.1 0.2 0.3 0.4 0.5

K =1002 1010 1.023 1.040 1.064
Form = 0.6 0.7 0.8 0.9 10
K=1092 1127 1168 1216 1.273

/3
S

Fig. 2.1.37 Ellipse.

Hyperbola [{E[g—2.1.3B) In any hyperbola, shaded area A = ab In
[(x/a) + (y/b)]. Inan equilateral hyperbola(a = b), area A = a?2sinh—1
(y/a) = a2 cosh~1 (x/a). Here x and y are coordinates of point P.

P
b y
Y
a ZA
b y
a —=]

Fig. 2.1.38 Hyperbola.
For lengths and areas of other curves see Analytical Geometry.

Surfaces and Volumes of Solids

Regular Prism [E[@—Z139] Volume = Y2nrah = Bh. Latera
area = nah = Ph. Here n = number of sides; B = area of basg;
P = perimeter of base.

Right Circular Cylinder [EIg—Z120) Volume = zr2h = Bh.
Lateral area = 2#rh = Ph. Here B = area of base; P = perimeter of

base.

Fig. 2.1.39 Regular prism. Fig. 2.1.40 Right circular

cylinder.

Truncated Right Circular Cylinder (Eg—21210 Volume =
7wr2h = Bh. Lateral area = 2@#rh = Ph. Here h = mean height =
Y2(h, + h,); B = area of base; P = perimeter of base.

Fig. 2.1.41 Truncated right circular cylinder.

Any Prism or Cylinder [Fg._2.1.42) Volume = Bh = NI. Latera
area = Ql. Here |l = length of an element or lateral edge; B = area of
base; N = area of normal section; Q = perimeter of normal section.

Fig. 2.1.42 Any prism or cylinder.

Special Ungula of a Right Cylinder [Eg—2123) Volume = %5r2H.
Lateral area = 2rH. r = radius. (Upper surface is a semiellipse.)

H
' K
r
Fig. 2.1.43 Specia ungula of aright circular cylinder.
Any Ungula of aright circular cylinder [Eigs—2.1.4 and 2.1.45)

Volume = H(%sa3 = cB)/(r = ¢) = H[a(r? — ¥sa?) = r2c rad u]/
(r £ c). Laterd area = H(2ra = cs)/(r = ¢) = 2rH(a = c rad u)/

N !
| vl
A \Y)

Fig. 2.1.44 Ungulaof aright
circular cylinder.

Fig. 2.1.45 Ungulaof aright
circular cylinder.
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(r £ c). If base is greater (less) than a semicircle, use + (=) sign.r =
radius of base; B = area of base; s = arc of base; u = half theangle sub-
tended by arc s at center; rad u = radian measure of angle u.

Regular Pyramid [E[—2.146) Volume = ¥ dtitude X area of
base = ¥shran. Lateral area = ¥ dant height X perimeter of base =
¥»2san. Here r = radius of inscribed circle; a = side (of regular poly-
gon); n = number of sides; s = vr2 + h2 Vertex of pyramid directly
above center of base.

a

Fig. 2.1.46 Regular pyramid.

Right Circular Cone Volume = Ya7r2h. Lateral area = #r's. Here
r = radius of base; h = atitude; s = slant height = vr2 + h2.

Frustum of Regular Pyramid [(EO—21247) Volume = ¥shran[1 +
(a'la) + (a'/a)q. Lateral area = slant height X half sum of perimeters
of bases = dant height X perimeter of midsection = ¥2sn(r + r’). Here
r,r’ = radii of inscribed circles; s = V(r — r’)2 + h% a,a’ = sides of
lower and upper bases; n = number of sides.

Frustum of Right Circular Cone [E@_—_ZTZ8]1 Volume =
Yaar2h[1 + (r'Ir) + (r'Ir)?] = Yamh(r2 + rr’ + 1'2) = Yamh[r +1')2 +
Ya(r — r')?. Lateral area = ws(r + r'); s=V(r — r')2 + h2

[0}

Fig. 2.1.48 Frustum of aright
circular cone.

Fig. 2.1.47 Frustum of a
regular pyramid.

Any Pyramid or Cone Volume = ¥Bh. B = area of base; h =
perpendicular distance from vertex to plane in which base lies.

Any Pyramidal or Conical Frustum Volume =
¥sh(B + VBB’ + B') = ¥:hB[1 + (P'/P) + (P'/P)?]. Here B, B' =
areas of lower and upper bases; P, P’ = perimeters of lower and upper

bases.
/ // ya ! / /f T/
/

“7

Sphere Volume = V = 43713 = 4.188790r 2 = Yewd® = 73 volume
of circumscribed cylinder. Area = A = 4mr2 = four great cir-

Fig. 2.1.49 Pyramidal frustum and conical frustum.
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cles = wd?2 = lateral area of circumscribed cylinder. Here r = radius;
d = 2r = diameter = V6V/7 = VA/m.

Hollow Sphere or spherica shell. Volume = %7 (R3 — r3) =
Yorr(D3 — d®) = 47R3t + Yamt3. Here Rr = outer and inner radii;
D,d = outer and inner diameters; t = thickness = R — r; R, = mean
radius = ¥2(R + r).

Any Spherical Segment. Zone (EG—ZTHO)1 Volume =
Yerh(3a2? + 3aZ + h?). Lateral area (zone) = 2nrh. Here r = radius
of sphere. If theinscribed frustum of aconeisremoved from the spheri-
cal segment, the volume remaining is ¥smhc?, where ¢ = slant height
of frustum = vh2 + (a — a,)2

Fig. 2.1.50 Any spherical segment.

Spherical Segment of One Base. Zone (spherica ‘‘cap’’ of [Eidl
[2:151) Volume = Ymh(3a2 + h2) = ¥%37h2(3r — h). Latera area (of
zone) = 2mth = (a2 + h?).

NoTE. a2 = h(2r — h), wherer = radius of sphere.

Spherical Sector EIQ—Z2THT)} Volume = ¥ar X area of cap =
%3mr2h. Total area = area of cap + areaof cone = 2arh + mra.

NoTe. a?= h(2r — h).

Spherical Wedge bounded by two plane semicirclesand alune (Eigl]
[2152). Volume of wedge + volume of sphere = u/360°. Area of
lune -+ area of sphere = u/360°. u = dihedra angle of the wedge.

Fig. 2.1.51 Spherica sector. Fig. 2.1.52 Spherical wedge.

Solid Angles Any portion of a spherical surface subtends what is
caled a solid angle at the center of the sphere. If the area of the given
portion of spherical surface is equa to the square of the radius, the
subtended solid angle is called a steradian, and this is commonly taken
asthe unit. The entire solid angle about the center is called asteregon, so
that 47 steradians = 1 steregon. A so-called *‘solid right angle’’ is the
solid angle subtended by a quadrantal (or trirectangular) spherical trian-
gle, and a*‘‘ spherical degree’’ (now little used) isa solid angle equal to
Y90 of asolid right angle. Hence 720 spherical degrees = 1 steregon, or
7 steradians = 180 spherical degrees. If u = the angle which an element
of acone makes with its axis, then the solid angle of the cone contains
27r(1 — cos u) steradians.

Regular Polyhedra A = area of surface; V = volume; a = edge.

Name of
solid Bounded by Ala2 Viad
Tetrahedron 4 triangles 1.7321 0.1179
Cube 6 squares 6.0000 1.0000
Octahedron 8 triangles 3.4641 0.4714
Dodecahedron 12 pentagons 20.6457 7.6631
Icosahedron 20 triangles 8.6603 21917
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Ellipsoid OEQ—2Z153) Volume = %swabc, where a, b, ¢ = semi-
axes.

Torus, or Anchor Ring [EQ—2154) Volume = 272cr2. Area =
4a2cr.

Fig. 2.1.53 Ellipsoid. Fig. 2.1.54 Torus.

Volume of a Solid of Revolution  (solid generated by rotating an area
bounded above by f(x) around the x axis)

b
V= wf | F(x)]2 dx
a
Area of a Surface of Revolution

b
A=2m f WI F (dy/dx)? dx

a

Length of Arc of a Plane Curve Yy = f(x) between valuesx = a and
b
x=h.s= f V1 + (dy/dx)2dx. If x = f(t) andy = g(t), fora<t <b,

a
then

b
s= f V{AxIdtyZ + (dy/dt)z dt

PERMUTATIONS AND COMBINATIONS

The product (1)(2)(3) . . . (n) iswritten n! and isread ‘‘n factorial.”
By convention, 0! = 1, and n! is not defined for negative integers.
For large values of n, n! may be approximated by Stirling's formula:

Nl ~ 2.50663n"+ g~
The binomial coefficient C(n, k), also written (E) , is defined as:

n!
k!(n — K)!

C(n, k) isread ‘‘n choose k'’ or as ‘‘binomial coefficient n-k.”’
Binomia coefficients have the following properties:
1. C(n,0)=C(n,n)=1
2.Cin,1)=C(n,n—1)=n
3. C(n+ 1,k =C(nk) +C(nk—1)
4. C(n,k) =C(n,n— k)
Binomial coefficients are tabulated in Sec. 1.

c(n K =

Binomial Theorem
If nis apositive integer, then

n
(@a+ b= > C(n kjabk
k=0

ExAMPLE. The third term of (2x + 3)7 is C(7, 4)(2x)"~43* = [7!/
(4131)](2x)33* = (35)(8 x3)(81) = 22680x3.

Combinations C(n, k) gives the number of ways k distinct objects
can be chosen from a set of n elements. Thisisthe number of k-element
subsets of a set of n elements.

ExAMPLE. Theset of four elements{a, b, c, d} hasC{4, 2) = 6 two-element
subsets, {a, b}, {a, c}, {a, d}, {b, ¢}, {b, d}, and {c, d}. (Note that {a, c} isthe
same set as{c, a}.)

Permutations The number of ways k objects may be arranged from
a set of n elementsis given by

n!
(n — K)!

ExamPLE. Two elements from the set {a, b, ¢, d} may be arranged in
C(4,2) = 12ways: ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, and dc. Notethat acis
a different arrangement than ca.

P(n, k) =

Permutations and combinations are examined in detail in most texts
on probability and statistics and on discrete mathematics.

If an event can occur in s ways and can fal to occur in f ways,
and if al ways are equally likely, then the probability of the event’s
occurring is p = s/(s + f), and the probability of failure is q =
fils+f)=1-p.

The set of al possible outcomes of an experiment is called the sample
space, denoted S Let n be the number of outcomesin the sample set. A
subset A of the sample spaceis called an event. The number of outcomes
in Aiss. Therefore P(A) = s/n. The probability that A does not occur is
P(CA)=qg=1-p.

AlwaysO=p=1land P(S = 1.

If two events cannot occur simultaneously, then AN B = &, and A
and B are said to be mutually exclusive. Then P(A U B) = P(A) + P(B).
Otherwise, P(A U B) = P(A) + P(B) — P(A N B).

Events A and B are independent if P(A N B) = P(A)P(B).

If Eisan event and if P(E) > O, then the probability that A occurs
once E has already occurred is called the ** conditional probability of A
given E,”" written P(A|E) and defined as

P(A|E) = P(A N E)/P(E)

A and E are independent if P(A|E) = P(A).

If the outcomes in a sample space X are all numbers, then X, together
with the probabilities of the outcomes, iscalled arandom variable. If X; is
an outcome, then g = P(X;).

The expected value of arandom variableis

EX) =Zep
The variance of X is
V(X) = Z[x — E(X)]?p;
The standard deviation is
S(X) = VIV(X)]

The Binomial, or Bernoulli, Distribution If an experiment is re-
peated n times and the probability of a success on any trial isp, then the
probability of k successes among those n trials is

f(n, k, p) = C(n, Kpq" &

Geometric Distribution If an experiment is repeated until it finally
succeeds, let x be the number of failures observed before the first suc-
cess. Let p be the probability of successon any trial andletq =1 — p.
Then

Px=K =qg<p
Uniform Distribution If the random variable x assumesthevalues 1,
2, . .., n, with equal probabilities, then the distribution is uniform,
and
1
P(x=Kk) ==
(x=1k ==

Hypergeometric Distribution— Sampling without Replacement  If
afinite population of N elements contains x successes and if nitemsare
selected randomly without replacement, then the probability that k suc-
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cesses will occur among those n samplesis
C(k, X)C(N — k, n — x)
C(N, n)

For large values of N, the hypergeometric distribution approachesthe
binomial distribution, so

mKNJLm~f<mK%>

Poisson Distribution If the average number of successes which
occur in a given fixed time interval is m, then let x be the number of
successes observed in that time interval. The probability that x = k is

h(x; N, n, k) =

e~ mmx

3 wheree = 2.71828 . . .

p(k, m) =

Negative Binomial Distribution If repeated independent trials have
probability of success p, then let x be the trial number upon which
success number n occurs. Then the probability that x = k is

b*(k; n, p) = C(k — 1, n — L)pgk—n

The expected values and variances of these distributions are summa-
rized in the following table:

Distribution E(X) V(X)
Uniform (n+1)/2 (n?z — 1)/12
Binomial np npq
Hypergeometric nk/N [nk(N — n)(1 — k/N)I/[N(N — 1)]
Poisson m m
Geometric a/p q/p?
Negative binomial na/p ng/p?

LINEAR ALGEBRA

Using linear algebra, it is often possibleto expressin asingle equation a
set of relations that would otherwise require several equations. Simi-
larly, it is possible to replace many calculations involving several vari-
ableswith afew calculationsinvolving vectors and matrices. In general,
the equations to which the techniques of linear algebra apply must be
linear equations; they can involve no polynomial, exponential, or trigo-
nometric terms.

Vectors

A row vector visalist of numberswritten in arow, usualy enclosed by
parentheses.

V=V Ve, V)

A column vector u is alist of numbers written in a column:

The numbers u; and v; may be real or complex, or they may even be
variables or functions.

A vector is sometimes called an ordered n-tuple. In the case where
n = 2, it may be called an ordered pair.

The numbers v; are called components or coordinates of the vector v.
The number n is called the dimension of v.

Two-dimensional vectors correspond with pointsin the plane, where
v, is the x coordinate and v, is the y coordinate of the point v. Two-
dimensional vectors aso correspond with complex numbers, where
Z=V; + iV,
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Three-dimensional vectors correspond to points in space, where v;,
V,, and v; are the X, y, and z coordinates of the point, respectively.

Two- and three-dimensional vectors may be thought of as having a
direction and a magnitude. See the section ‘* Analytical Geometry.””’

Two vectors u and v are equal if:

1. u and v are the same type (either row or column).

2. u and v have the same dimension.

3. Corresponding components are equal; that is, u; = v, for i =
L2 ...,n

Note that the row vectors

u=(1,273 and v=(321)

are not equal since the components are not in the same order. Also,

u=(1273) and v=1| 2
3

are not equal since u isarow vector and v is a column vector.

Vector Transpose If u is a row vector, then the transpose of u,
written uT, is the column vector with the same components in the same
order asu. Similarly, the transpose of a column vector isthe row vector
with the same components in the same order. Note that (uT)™ = u.

Vector Addition If u and v arevectors of the same type and the same
dimension, then the sum of u and v, writtenu + v, isthe vector obtained
by adding corresponding components. In the case of row vectors,

U+v=_(U +Vv,U+V, ...,Uu +V,)

Scalar Multiplication If a is a number and u is a vector, then the
scalar product au is the vector obtained by multiplying each component
of u by a.

au = (auy, au,, . . . ,au,)

A number by which a vector is multiplied is called a scalar.
The negative of vector u is written —u, and

—u=—1u

The zero vector isthe vector with al its components equal to zero.

Arithmetic Properties of Vectors If u, v, and w are vectors of the
same type and dimensions, and if a and b are scalars, then vector addi-
tion and scalar multiplication obey the following seven rules, known as
the properties of a vector space:

Lu+v)+w=u+(v+w) associative law
2u+tv=v+u commutative law

3 u+0=u additive identity

4. u+(—u)=0 additive inverse

5. a(u +v) =au + av distributive law

6. (ab)u = a(bu) associative law of

multiplication
7. lu=u multiplicative identity

Inner Product or Dot Product If u and v are vectors of the same
type and dimension, then their inner product or dot product, written uv or
u - v, isthe scaar

Uv = UpVy + UV + -+ - + UV,

Vectors u and v are perpendicular or orthogonal if uv = 0.
Magnitude There are two equivalent ways to define the magnitude
of avector u, written [u| or |u]|.
[u] = V(u - u)
or ul=vug+uw+- -+ w3

Cross Product or Outer Product If u and v are three-dimensional
vectors, then they have acrossproduct, also called outer product or vector
product.

U X V = (UpVg — UgVy, ViUg — VgUy, UV — UyV,)
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The cross product u X v isathree-dimensional vector that is perpen-
dicular to both u and v. The cross product is not commutative. In fact,

uxXv=-vxu

Cross product and inner product have two properties involving trigo-
nometric functions. If 6 is the angle between vectors u and v, then

uv = |u]|v]|cos 6 and lu X v|=|u]lv|sin®

Matrices

A matrix isarectangular array of numbers. A matrix A with mrowsand
n columns may be written

Q; dp a3 n
A Axp Ay A
A= as ap ag &n
A Qe Gmw C Am

The numbers a; are called the entries of the matrix. Thefirst subscript
i identifies the row of the entry, and the second subscript j identifies the
column.

Matrices are denoted either by capital |etters, A, B, etc., or by writing
the general entry in parentheses, (a)).

The number of rows and the number of columns together define the
dimensions of the matrix. The matrix A isan m X n matrix, read ‘‘'m
by n.”’

A row vector may be considered to bea 1 X n matrix, and acolumn
vector may be considered asan X 1 matrix.

The rows of a matrix are sometimes considered as row vectors, and
the columns may be considered as column vectors.

If amatrix has the same number of rows as columns, the matrix is
called a square matrix.

In a square matrix, the entries g;, where the row index is the same as
the column index, are called the diagonal entries.

If amatrix has all its entries equal to zero, it is called a zero matrix.

If a square matrix has all its entries equal to zero except its diagonal
entries, it is caled a diagonal matrix.

The diagonal matrix with al its diagonal entries equal to 1 is called
the identity matrix, and is denoted I, or |, if it isimportant to empha-
sizethe dimensions of the matrix. The 2 X 2 and 3 X 3identity matrices

are:
(10 B 100
I2><2 - 0 1 |3><3_ 010

The entries of asquare matrix a; wherei > j are said to be below the
diagonal. Similarly, those wherei < j are said to be above the diagonal.

A sguare matrix with all entries below (resp. above) the diagonal
equal to zero is called upper-triangular (resp. lower-triangular).

Matrix Addition Matrices A and B may be added only if they have
the same dimensions. Then the sum C = A + B is defined by

cj =a;+ by
That is, corresponding entries of the matrices are added together, just
as with vectors. Similarly, matrices may be multiplied by scalars.
Matrix Multiplication Matrices A and B may be multiplied only if
the number of columnsin A equals the number of rows of B. If Aisan

m X nmatrix and B isan n X p matrix, then the product C = ABisan
m X p matrix, defined as follows:

Cj = &by + Ay + - - - + by
= > auy
k=1

Theentry ¢; may also be defined as the dot product of row i of Awith
the transpose of column j of B.

EXAMPLE. (l 2) <3 4) =
5 6 7 8

1X3+2X7 1x4+2x8\ _ (17 20
<5><3+6><7 5><4+6><8) B (57 68)

Matrix multiplication is not commutative. Even if A and B are both
sguare, it is hardly ever true that AB = BA. Matrix multiplication does
have the following properties:

1. (AB)C = A(BC)

2. AB+C)=AB+ AC

3. B+ C)A=BA+CA
If Ais sguare, then also

4. Al=1A=A multiplicative identity

If Aissquare, then powers of A, AA, and AAA are denoted A2 and A3,
respectively.

The transpose of a matrix A, written AT, is obtained by writing the
rows of A as columns. If Aism X n, then ATisn X m.

EXAMPLE. 1231—*;[51
" \4 56/

3 6

associative law
distributive laws

The transpose has the following properties:
1. (A=A
2. (A+B)T= AT + BT
3. (AB)T = BTAT
Note that in property 3, the order of multiplication is reversed.
If AT = A, then Ais called symmetric.

Linear Equations
A linear equation in two variablesis of the form

X, + aX=Db or uyx+ay=>hb

depending on whether the variables are named x; and x, or x and y.
In n variables, such an equation has the form

QX +aXt+ - ax,=b

Such equations describe lines and planes. Often it is necessary
to solve several such equations simultaneously. A set of mlinear equa-
tions in n variables is called an m X n system of simultaneous linear
equations.

Systems with Two Variables
1 x 2 Systems An equation of the form

ux+ay=>hb

has infinitely many solutions which form a straight line in the xy plane.
That line has slope — a,/a, and y intercept b/a,.
2 x 2Systems A 2 X 2 system has the form

auX + apy = by X + axpy =b,

Solutions to such systems do not always exist.

Case 1. The system has exactly one solution [Eig—21554). The
lines corresponding to the equations intersect at a single point. This
occurs whenever the two lines have different slopes, so they are not

(a) (b) (c)

Fig. 2.1.55 Line corresponding to linear equations. (a) One solution; (b) no
solutions; (c) infinitely many solutions.
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parallel. In this case,
Q1,8
axn  Axp
Case 2. The system has no solutions [Eig.2.1.56b). This occurs
whenever the two lines have the same slope and different y intercepts,
so they are parallél. In this case,

a118, — Apdyp # 0

Ay _ ap

axn Ay

Case 3. The system has infinitely many solutions [Fig._2.1.55¢).
This occurs whenever the two lines coincide. They have the same slope
and y intercept. In this case,

8y ap b

The value a;a,, — a,,84, is caled the determinant of the system. A
larger n X n system also has a determinant (see below). A system has
exactly one solution when its determinant is not zero.

3 x 2 Systems Any system with more equations than variables is
caled overdetermined. The only case in which a 3 X 2 system has
exactly one solution is when one of the equations can be derived from
the other two.

One basic way to solve such a system isto treat any two equations as
a2 X 2 system and seeif the solution to that subsystem of equationsis
also a solution to the third equation.

Matrix Form for Systems of Equations The 2 X 2 system of linear

equations
QX + AXp = by Az1Xy T AxpX = b,

may be written as a matrix equation as follows:
<au a12> (X1> _ (bl
Az Axp X2 b,
Ax=Db

where A isthe 2 X 2 matrix and x and b are two-dimensional column
vectors. Then, the determinant of A, written det A or |A|, isthe same as
the determinant of the 2 X 2 system:

or as

det A = 8,185 — @895

In general, any m X n system of simultaneous linear equations may
be written as

Ax=Db

where Aisan m X nmatrix, x isan n-dimensional column vector, and b
isan mdimensional column vector.

Ann X n (square) system of simultaneous linear equations has ex-
actly one solution whenever its determinant isnot zero. Then the system
and the matrix A are called nonsingular. If the determinant is zero, the
system is called singular.

Elementary Row Operations on a Matrix Therearethree operations
on a matrix which change the matrix:

1. Multiply each entry in row i by a scalar k (not zero).

2. Interchange row i with row j.

3. Add row i to row j.

Similarly, there are three elementary column operations.

The elementary row operations have the following effects on |A|:

1. Multiplying arow (or column) by k multiplies |A| by k.

2. Interchanging two rows (or columns) multiplies |A| by — 1.

3. Adding one row (or column) to another does not change |A|.

Pivoting, or Reducing, a Column The process of changing the ij
entry of amatrix to 1 and changing the rest of column j to zero, by using
elementary row operations, is known as reducing column j or as pivoting
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on the ij entry. Combining pivoting, the properties of the elementary
row operations, and the fact:

[Thsnl =1
provides a technique for finding the determinant of n X n matrices.

EXAMPLE. Find |A] where

1 2 -4
A=|5 -3 -7
3 -2 3

First, pivot on the entry in row 1, column 1, in this case, the 1.
Multiplying row 1 by — 5, then adding row 1 to row 2, we first multiply the
determinant by — 5, then do not change it:

-5 —-10 20 -5 —10 20
—5Al=| 5 -3 -7|=| 0 -13 13
3 -2 3 3 -2 3

Next, multiply row 1 by ¥ and add row 1 to row 3:

-3 -6 12 -3 -6 12
-3|Al = 0 —13 13| = 0 —-13 13
3 -2 3 0 -8 15
Next, divide row 1 by — 3:
1 2 —4
|A|]=]0 —13 13
0 -8 15

Next, pivot on the entry in row 2, column 2. Multiplying row 2 by — %13 and then
adding row 2 to row 3, we get:

3 1 2 —4 1 2 -4
—E|A|: 0O 8 -8/ =|08 -8
0 -8 15 o0 7
Next, divide row 2 by — %1a.
1 2 -4
[A]l=]0 —-13 13
0 o 7

The determinant of atriangular matrix is the product of its diagonal elements, in
this case — 91.

Inverses Whenever |A|is not zero, that is, whenever A isnonsingu-
lar, then there is another n X n matrix, denoted A—1, read ‘*Ainverse’’
with the property

AA-L=ATA= .,
Then the n X n system of equations
Ax=hb
can be solved by multiplying both sides by A=1, so

X=X = A 1Ax = A~1b
o x=A"1

The matrix A—1 may be found as follows:

1. Make an X 2n matrix, with the first n columns the matrix A and
the last n columns the identity matrix I, «

2. Pivot on each of the diagona entries of this matrix, one after
another, using the elementary row operations.

3. After pivating n times, the matrix will have in the first n columns
the identity matrix, and the last n columns will be the matrix A=1.

ExXAMPLE. Solve the system
X3+ 2%, —4xg3 = —4

5% — 3%, — X3 =6
X — 2%, + 3xg = 11
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We must invert the matrix

This is the same matrix used in the determinant example above. Adjoin the
identity matrix to make a3 X 6 matrix

1 2 -4 1
5 -3 -7 0
3 -2 30

[=N e}
= O O

Perform the elementary row operations in exactly the same order as in the
Pivot on row 1, column 1.

1 2 -4

0 —13 13

0 -8 15

determinant example.
100
-5 10
-3 01
SteP 2. Pivot on row 2, column 2.

STEP 1.
1 0 -2 %3 %3 0
01 -1 % —%s O
00 7 Yiz —%3 1

Step 3. Pivot on row 3, column 3.

1 0 0 Fa —Yau Ha
0 1 0 % —%a Wa
0 01 Yau —%au Wa

Now, the inverse matrix appears on the right. To solve the equation,
=A1

X
W1 —Yn e -4
S0, x=\| %1 —%a Wa 6
Yoo —%a Wa 11

(—4X23+6X —2 + 11X 26)/91 2
=| (-4%X36+6x-15+11Xx13)/91 | = —1
(—4X1 +6X -8 + 11X 13)/91 1

The solution to the system is then
X =2 X, =—1 Xz=1

Special Matrices If A isamatrix of complex numbers, then it is
possible to take the complex conjugate a;* of each entry, a;. Thisis
called the conjugate of A and is denoted A*.

. If &; = g, then Ais symmetric.

If &; = — &, then Ais skew or antisymmetric.
If AT = A1, then Alis orthogonal.

If A= A1, then Aisinvolutory.

If A = A*, then A is hermitian.

If A = — A* then A is skew hermitian.

. If A=1 = A* then Aisunitary.

Elgenvalues and Eigenvectors If A is a square matrix and x is a
variable, then the matrix B = A — xl is the characteristic matrix, or
eigenmatrix, of A. The determinant |A — xl | isapolynomial of degreen,
called the characteristic polynomial of A. The roots of this polynomial,
X1, Xgy -« « ., Xy, are the eigenvalues of A.

Note that some sources define the characteristic matrix asxl — A. If n
is odd, then this multiplies the characteristic equation by — 1, but the
eigenvalues are not changed.

-2 5
21

1IN O R~WONE

—-2-X 5
2 1-x

- |

EXAMPLE. A= |

Then the characteristic polynomial is

[Bl=(-2-x)(1 - x) - (2(5)
=x2+x—-2-10
=x2+x-12
=X+ 4)(x-23)

The eigenvaluesare —4 and + 3.

A nonzero vector v satisfying

(A=xl)v=0
iscalled an eigenvector of A associated with the eigenvalue ;. Eigenvec-
tors have the specia property

Av = xv

Any multiple of an eigenvector is also an eigenvector.

A matrix is nonsingular when none of its eigenvalues are zero.

Rank and Nullity It is possible that the product of a nonzero matrix
A and anonzero vector v iszero. Thiscannot happenif Aisnonsingular.

The set of al vectors which become zero when multiplied by A is
called thekernel of A. Thenullity of Aisthedimension of thekernel. Itis
ameasure of how singular a matrix is.

If Aisan m X n matrix, then the rank of A isdefined asn — nullity.
Rank is at most m.

The technique of pivoting is useful in finding the rank of a matrix.
The procedure is as follows:

1. Pivot on each diagonal entry in the matrix, starting with a;;.

2. If arow becomes all zero, exchange it with other rows to move it
to the bottom of the matrix.

3. If adiagonal entry is zero but the row isnot all zero, exchange the
column containing the entry with a column to the right not containing a
zero in that row.

When the procedure can be carried no further, the nullity is the num-
ber of rows of zerosin the matrix.

ExAMPLE. Find the rank and nullity of the 3 X 2 matrix:

11
21
4 1

Pivoting on row 1, column 1, yields

Pivoting on row 2, column 2, yields

(

Nullity is therefore 1. Rank is3 — 1 = 2.

oro
SN—

[oNaN

If the rank of amatrix is n, so that
Rank + nullity = m
the matrix is said to be full rank.

TRIGONOMETRY

Formal Trigonometry

Angles or Rotations An angle is generated by the rotation of aray,
as Ox, about afixed point O in the plane. Every angle has an initial line
(OA) from which the rotation started [EIg—2_T58), and a terminal line
(OB) where it stopped; and the counterclockwise direction of rotationis
taken as positive. Since the rotating ray may revolve as often asdesired,
angles of any magnitude, positive or negative, may be obtained. Two
angles are congruent if they may be superimposed so that their initial
lines coincide and their terminal lines coincide; i.e., two congruent
angles are either equa or differ by some multiple of 360°. Two angles
are complementary if their sumis90°; supplementary if their sumis 180°.

Fig. 2.1.56 Angle.
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(The acute angles of aright-angled triangle are complementary.) If the
initial line is placed so that it runs horizontally to the right, as in[Egl

2157, then the angle is said to be an angle in the 1st, 2nd, 3rd, or 4th
quadrant according as the terminal line lies across the region marked I,
I, 111, or 1V.

Fig. 2.1.57 Circle showing quadrants.

Units of Angular Measurement

1. Sexagesimal measure. (360 degrees = 1 revolution.) Denoted on
many calculators by DEG. 1 degree = 1° = Y0 of aright angle. The
degreeisusualy divided into 60 equal parts called minutes ('), and each
minute into 60 equal parts called seconds ("'); while the second is subdi-
vided decimally. But for many purposesit is more convenient to divide
the degreeitself into decimal parts, thus avoiding the use of minutes and
seconds.

2. Centesimal measure. Used chiefly in France. Denoted on calcula-
tors by GRAD. (400 grades = 1 revolution.) 1 grade = %100 of aright
angle. The gradeisaways divided decimally, the following terms being
sometimes used: 1 ‘‘centesimal minute’’ = %100 Of agrade; 1 *‘ centesi-
mal second’’ = Y100 of a centesimal minute. In reading Continental
books it is important to notice carefully which system is employed.

3. Radian, or circular, measure. (7 radians = 180 degrees.) Denoted
by RAD. 1radian = the angle subtended by an arc whose length is equal
to the length of the radius. The radian is constantly used in higher
mathematics and in mechanics, and is always divided decimally. Many
theorems in calculus assume that angles are being measured in radians,
not degrees, and are not true without that assumption.

1radian = 57°.30 — = 57°.2957795131
= 57°17'44" 806247 = 180°/7
1° = 0.01745 . . . radian = 0.01745 32925 radian
1’ = 0.00029 08882 radian
1” = 0.00000 48481 radian

Table 2.1.2 Signs of the Trigonometric Functions

If xisin quadrant | 1 1 v
sinx and csc x are + + - -
cos x and sec x are + — - +
tan x and cot x are + - + -

Definitions of the Trigonometric Functions Let x be any angle
whose initial lineis OA and terminal line OP (see[F1g-Z.1.58). Drop a

Table 2.1.3 Ranges of the Trigonometric Functions
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perpendicular from P on OA or OA produced. In theright triangle OMP,
the three sides are MP = ‘‘side opposite’’ O (positive if running up-
ward); OM = ‘‘side adjacent’’ to O (positive if running to the right);
OP = ‘‘hypotenuse’’ or ‘‘radius’ (may aways be taken as positive);
and the six ratios between these sides are the principal trigonometric

Fig. 2.1.58 Unit circle showing elements used in trigonometric functions.

functions of the angle x; thus:

sine of x = sin x = opp/hyp = MP/OP
cosine of X = cos x = adj/hyp = OM/OP
tangent of x = tan x = opp/adj = MP/OM
cotangent of x = cot x = adj/opp = OM/MP
secant of x = sec x = hyp/adj = OP/OM
cosecant of X = csc X = hyp/opp = OP/MP

The last three are best remembered as the reciprocals of the first three:

cot x = l/tan x sec X = 1/cos x cscx = 1/sinx

Trigonometric functions, the exponential functions, and complex num-
bers are @l related by the Euler formula: €% = cosx + i sin x, where
i = v—1. A special case of this €7 = — 1. Note that here x must
be measured in radians.

Variationsin the functions as x varies from 0 to 360° are shown in
[Z13 The variations in the sine and cosine are best remembered by
noting the changes in the lines MP and OM[{EIg.Z1.59) in the ‘‘unit
circle’” (i.e., acircle with radius = OP = 1), as P moves around the

circumference.
D &

Fig. 2.1.59 Unit circle showing angles in the various quadrants.

Vaues at
xin DEG 0° to 90° 90° to 180° 180° to 270° 270° to 360° 30° 45° 60°
xin RAD (0to a2) (w210 ) (710 37/2) (31210 2m) (wl6) (wld) (al3)
sin x +0to+1 +1t0+0 -0to—1 -1t0-0 ¥ ¥2\2 ¥2V3
CsC X +oto+1 +1to+® —oto—1 —1to—» 2 V2 73V3
cos X +1t0+0 -0to—1 -1t0-0 +0to+1 %23 %292 ¥
SEC X +1to+x —wto—1 —1lto— +ooto+1 73V3 V2 2
tan x +0to +% —%t0—0 +0to +% —%t0—0 ¥2v3 1 V3
cot x +oto+0 —0to—o +oto+0 —0to—o V3 1 ¥5V3
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To Find Any Function of a Given Angle (Reduction to the first
quadrant.) It is often required to find the functions of any anglex froma
table that includes only angles between 0 and 90°. If x is not aready
between 0 and 360°, first ‘‘reduce to the first revolution” by simply
adding or subtracting the proper multiple of 360° [for any function of
(x) = thesamefunction of (x == n X 360°)]. Next reduceto first quadrant
per table below.

tan (x +y) = (tan x + tan y)/(1 — tan x tan y)
cot (x +y) = (cot x cot y — 1)/(cot x + cot y)
sin(x —y) =sinXxcosy — cosxsiny
CoS(X —y) = cosxcosy + sinxsiny

tan (x — y) = (tan x — tan y)/(1 + tan x tany)
cot (x —y) = (cot x coty + 1)/(cot y — cot X)
sinXx + siny = 2sin ¥2(x + y) cos ¥2(x — y)

90° and 180° 180° and 270° 270° and 360°
If x is between (72 and m) (7 and 37/2) (3n/2 and 27)
Subtract 90° from x (7/2) 180° from x () 270° from x (37/2)
Then sin x =+ cos(x — 90°) = —sdn(x — 180°) = —cos(x — 270°)
CsC X = +sec (x — 90°) = —csc (x — 180°) = —sec (x — 270°)
COos X = —sin(x — 90°) = —cos(x — 180°) = +sin (x — 270°)
SEC X =—csc(x — 90°) = —sec (x — 180°) —+csc(x7270°)
tan x = —cot (x — 90°) = +tan (x — 180°) = —cot (x — 270°)
cot X = —tan (x — 90°) =+ cot (x — 180°) = —tan (x — 270°)

The*‘reduced angle’” (x — 90°, or x — 180°, or x — 270°) will in each
case be an angle between 0 and 90°, whose functions can then be found
in the table.

NoOTE. The formulas for sine and cosine are best remembered by aid of the
unit circle.

To Find the Angle When One of Its Functions Is Given In general,
there will be two angles between 0 and 360° corresponding to any given
function. The rules showing how to find these angles are tabulated
below.

First find an acute Then the required angles x, and

Given angle X, such that X, Will be*
snx=+a sinx, = a X and 180° — X,
CoSX = +a COSXy = @ X and [360° — X
tanx = +a tanx, = a X, and [180° + xg]
cotx = +a cotxg = a Xo and [180° + Xg]
snx=—a sinx, = a [180° + %] and [360° — X
COSX = —a COS Xy = a 180° — X, and [180° + Xg|
tanx = —a tanx, = a 180° — X, and [360° — Xg|
cotx=—a cotx, = a 180° — x, and [360° — X

* Theangles enclosed in bracketslie outside the range 0 to 180 deg and hence cannot occur as
anglesin atriangle.

Relations Among the Functions of a Single Angle

sin?x + cos?x = 1

sinx
tanx =
COS X
1 COS X
COtX = —— = —
tanx sinx

1+ tan?x = sec?x =

cos? X
1+ cot2x = csc2x = —
sin? x
. —— tan x 1
sinx = V1 — co?x = =
V1+tan2x V1 + cot? x
R 1 cot X
cosx =Vl — sn2x = =
Vv1+ta?x V1 + cot? x

Functions of Negative Angles sin (—x) =
cos X; tan (—x) = —tan x.
Functions of the Sum and Difference of Two Angles

—sin X; €os (—Xx) =

sin(x +y) =sinxcosy + cosxsiny
CcosS(X +y) = cosxcosy — sinxsiny

SinX —siny = 2cos¥%2(X + y) sin¥2(x — y)
COSX + COSY = 2 €0S ¥2(X + Yy) cos ¥2(X — )
COSX — COSYy = —2sn¥2(x + y) sin ¥2(x — y)

sin(x +y) sin(x +y)
tanx + tany = ———=; cot x + coty = ———
COS X COS Y snxsiny
sin(x —y) sin (y — x)
tanx—tany—— cotx —coty = ——
COS X COS Y snxsiny

sin2x — sinfy = cofy — co? X = sin (X + y) sin(x — y)
Co?X — sinfy = cos?y — Sin?2 X = €os (X + Yy) cos (X — Y)
sin (45° + x) = cos (45° — X)

tan (45° + x) = cot (45° — x)
sin (45° — x) = cos (45° + X)
tan (45° — x) = cot (45° + x)

In the following transformations, a and b are supposed to be positive,
¢ = Va2 + b2, A = the positive acute angle for which tan A = a/b, and
= the positive acute angle for which tan B = b/a:

acosx + bsinx=csin(A+ x) =ccos(B — x)
acosx — bsinx=csin(A—-x)=ccos(B + X)

Functions of Multiple Angles and Half Angles

Sin 2x = 2sin X Cos X; SiN X = 2 Sin ¥2x cos ¥2x
COS2X = COZX — S X =1—2simlx=2cos?x — 1
2tan x

tan 2Xx = ———— cot 2x =
1—tan?x

cotzx — 1
2 cot X
. . . 3tanx — tan3 x
sin3x=3sinx —4smx;tan3x = ————m
1-3tan?x

cos 3x = 4 cos® X — 3 cos X
sin (nx) = nsinxcos"~* x — (n); sin® x cos"~ 3 x
+(N)s SIS XCcos" 55X — - - -

cos (nx) = cos” x — (n), sin2x cos"~2x + (n), siN*xcos"~4x — - - -

where (n),, (n)s, . . . , arethe binomial coefficients.

sin ¥ox = +V¥(1 — cosx). 1 — cosx = 2 sin? ¥2x
cos ¥ox = *V¥5(1 + cosx). 1 + cosx = 2 cos? ¥ax
/T—cosx _ sinx _ 1-cosx
1+cosx 1+cosx  sinx

+
tan( +45°) \/l Sinx
1—-sinx
Here the + or — sign is to be used according to the sign of the

left-hand side of the equation.
Approximations for sin x, cos x, and tan x For small values of X,

tan ¥ox = =
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x measured in radians, the following approximations hold:

2

X
cosx~1——

tan X = X
2

sin X ~ X
The following actually hold:

: sin x
snx < x<tanx cosx<T<l
Asx approaches 0, lim [(sin x)/X] = 1.

Inverse Trigonometric Functions The notation sin—1 x (read: anti-
sine of x, or inverse sine of x; sometimes written arc sin x) means the
principal anglewhose sineisx. Similarly for cos=1 x, tan—1 x, etc. (The
principal angle means an angle between — 90 and + 90° incaseof sin~*
and tan—1, and between 0 and 180° in the case of cos—1.)

Solution of Plane Triangles

The “‘parts’ of a plane triangle are its three sides a, b, ¢, and its three
angles A, B, C (A being opposite a). Two triangles are congruent if all
their corresponding parts are equal. Two triangles are similar if their
corresponding angles are equal, that is, A, = A,, B, = B,,and C, = C.
Similar triangles may differ in scae, but they satisfy aj/a, =
b,/b, = c,/c,.

Two different triangles may have two corresponding sides and the
angle opposite one of those sides equal [EIG—2TH0), and still not be
congruent. This is the angle-side-side theorem.

Otherwise, atriangle is uniquely determined by any three of its parts,
aslong asthose partsare not al angles. To *‘solve’’ atriangle meansto
find the unknown parts from the known. The fundamental formulas are

sinA

a
Law of sines; — = ——
b snB

Law of cosines: c2 = a2 + b2 — 2ab cos C

T TN

Fig. 2.1.60 Triangles with an angle, an adjacent side, and an opposite side
given.

Right Triangles Use the definitions of the trigonometric functions,
selecting for each unknown part arelation which connects that unknown
with known quantities; then solve the resulting equations. Thus, in[Eigl

21867, if C = 90°, then A + B = 90°, c2 = a2 + b2,

sinA = alc cos A = blc
tan A= alb cot A= bla

If Aisvery small, usetan ¥2A = V(c — b)/(c + b).

Oblique Triangles There are four cases. It is highly desirablein all
these cases to draw a sketch of the triangle approximately to scale
before commencing the computation, so that any large numerical error
may be readily detected.

B A
AO Qh
A - 2 B 0 c

Fig. 2.1.61 Right triangle. Fig. 2.1.62 Triangle with two
angles and the included side

given.

Case 1. GIVEN TWO ANGLES (provided their sum is < 180°) AND
ONE SIDE (say a,[Fig—2:162). The third angle is known since A +
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B + C = 180°. To find the remaining sides, use

_asinB C_asinC
sinA sinA

Or, drop a perpendicular from either B or C on the opposite side, and
solve by right triangles.

Check: ccosB + bcosC = a

Case 2. GIVEN TwO SIDES (say a and b) AND THE INCLUDED
ANGLE (C); AND SUPPOSE a > b

Method 1: Find c from c2 = a2 + b2 — 2ab cos C; then find the
smaller angle, B, from sin B = (b/c) sin C; and findly, find A from
A =180° - (B + C).

Check: acosB + bcosA = c.

Method 2: Find ¥2(A — B) from the law of tangents:

tan ¥2(A — B) = [(a — b)/(a + b)] cot ¥2C

and ¥2(A + B) from ¥2(A + B) = 90° — C/2; hence A = ¥»(A +
B) + ¥2(A — B) and B = ¥2(A + B) — ¥2(A — B). Then find ¢ from
c=asnC/snAorc=DbsnC/snB.

Check: acosB + bcosA = c.

Method 3: Drop a perpendicular from A to the opposite side, and
solve by right triangles.

Case 3. GIVEN THE THREE SIDES (provided the largest isless than
the sum of the other two)

Method 1: Find the largest angle A (WhICh may be acute or obtuse)
from cos A = (b2 + c2 — a?)/2bc and then find B and C (which will
always be acute) fromsin B = b sin A/aand sin C = csin Ala.

Check: A+ B + C = 180°.

A A

C * 8 C * B
Fig. 2.1.63 Triangle with two Fig. 2.1.64 Triangle with three
sides and the included angle sides given.

given.

Method 2: Find A, B, and C from tan %2A = r/(s — a), tan ¥2B =
rl(s — b), tan ¥.C = r/(s — c), wheres = ¥2(a + b + ¢),and r =
V(s — a)(s — b)(s — c¢)/s. Check: A + B + C = 180°.

Method 3: If only one angle, say A, isrequired, use

sin ¥2A = V(s — b)(s — c)/bc
or c0s ¥2A = V(s — a)/bc

according as ¥2A is nearer 0° or nearer 90°.

CAse 4. GIVEN TwO SIDES (say b and ¢) AND THE ANGLE OPPO-
SITE ONE OF THEM (B). Thisisthe ‘*ambiguous case’’ in which there
may be two solutions, or one, or none.

First, trytofind C = csinB/b. If sinC > 1, thereisno solution. If sin
C =1, C = 90° and the triangle is a right triangle. If sin C < 1, this
determines two angles C, namely, an acute angle C,, and an obtuse
angle C, = 180° — C,. Then C, will yield a solution when and only
when C,; + B < 180° (see Case 1); and similarly C, will yield asolution
when and only when C, + B < 180° (see Case 1).

Other Properties of Triangles (See also Geometry, Areas, and Vol-
umes.)

Area = %ab sin C = vs(s—a)(s— b)(s—c) = rs where
s = ¥Y(a + b + ¢), and r = radius of inscribed circle =
V(s — a)(s — b)(s— ¢)/s.

Radius of circumscribed circle = R, where

2R =al/sinA =Db/sinB = c/sinC
C abc

A. B
r=4Rsn—-sn—-sin—=—
SN SN T R
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The length of the bisector of the angle C is

2+abs(s — c) +Vab[(a+ b)2 — c?
zZ= =
a+b at+hb

The median from C to the middle point of ¢ is m =
Y2v2(a? + b?) — c2

Hyperbolic Functions

The hyperbolic sine, hyperbolic cosine, €tc., of any number X, are func-
tions of x which are closely related to the exponential eX, and which
have formal properties very similar to those of the trigonometric func-
tions, sine, cosine, etc. Their definitions and fundamental properties are
as follows:

sinh x = ¥2(ex — e™%)
cosh x = Y2(ex + e7%)
tanh x = sinh x/cosh x
cosh X + sinh x = ex
coshx — sinhx = e
csch x = 1/sinh x
sech x = 1/cosh x
coth x = L/tanh x

cosh?x — sinhZ2x = 1
1 — tanh? x = sech? x

1 — coth? x = —csch? x
sinh (—x) = —sinh x
cosh (— x) = cosh x
tanh (—x) = —tanh x

sinh (x = y) = sinhx coshy * cosh xsinhy
cosh (X = y) = coshxcoshy = sinhxsinhy
tanh (x £ y) = (tanh x = tanh y)/(1 = tanh x tanh y)
sinh 2x = 2 sinh x cosh x
cosh 2x = cosh? x + sinh? x
tanh 2x = (2 tanh x)/(1 + tanh? x)

sinh ¥2x = v¥2(cosh x — 1)
cosh ¥2x = v¥2(cosh x + 1)
tanh ¥2x = (cosh x — 1)/(sinh x) = (sinh x)/(cosh x + 1)
The hyperbolic functions are related to the rectangular hyperbola,
x2 — y2 = a?[([Fg. 2.1.68), in much the same way that the trigonometric

functions are related to the circle x2 + y2 = a2[[Eig. 2.1.85); the anal-
ogy, however, concerns not angles but areas. Thus, in either figure, let A

Fig. 2.1.65 Circle.

Fig. 2.1.66 Hyperbola.

represent the shaded area, and let u = A/a2 (a pure number). Then for
the coordinates of the point P we have, if . 265 X = acosu,y = a
sin u; and in[E10. 2166, x = acoshu,y = asinh u.

The inverse hyperbalic sine of y, denoted by sinh—1y, is the number
whose hyperbolic sine is y; that is, the notation x = sinh—! y means
sinh x = y. Similarly for cosh=1y, tanh—1y, etc. These functions are

closely related to the logarithmic function, and are especialy valuable
in the integral calculus.

sinh-Y(y/a) = In(y + vy2+ a?) — Ina

cosh-(y/a) = In(y + vy2 —a?) — Ina
a+y

tanh*lz =¥ 1In
a

y+a
y—a

coth—lz =%1In
a

ANALYTICAL GEOMETRY

The Point and the Straight Line

Rectangular Coordinates ({EIG—2ZT6T) Let P, = (X3, Y1), P, =
(X2, Y2). Then, distance

PP, = V(X2 — %)? + (Yo — Y1)?

slope of P,P, = m = tan u = (y, — y)/(X, — Xy); coordinates of
midpoint are X = ¥2(x; + X,), Y = ¥2(y; + Y,); coordinates of point
1/nth of the way from P, to P, arex = x; + (Un)(X, — Xg), Yy = y; +
@n)(y2 — ya).

Let my, m, be the slopes of two lines; then, if the lines are parallel,
m, = my; if the lines are perpendicular to each other, m; = — 1/m,.

Y F, y
g U
hi
0 X o a N
Fig. 2.1.67 Graph of straight Fig. 2.1.68 Graph of straight
line. line showing intercepts.

Equations of a Straight Line

1. Intercept form (Eig2168). x/a + y/b = 1. (a, b = intercepts of
the line on the axes.)

2. Yope form (El[g—2T6AL1ly = mx + b. (m = tan u = dope;
b = intercept on they axis.)

3. Normal forni{FIg-21.740). xcosv + ysinv = p. (p = perpendic-
ular from origin to line; v = angle from the x axis to p.)

7Aiix
0

Fig. 2.1.69 Graph of straight
line showing slope and vertical

Y

AN .
0
Fig. 2.1.70 Graph of straight
line showing perpendicular line

intercept. from origin.
. y—b X
4. Paralld-intercept form [Elg—2.1.71). b5 " % (b, c =

intercepts on two parallels at distance k apart.)

a3

Fig. 2.1.71 Graph of straight line showing intercepts on parallel lines.

5. General form. Ax + By + C = 0.[Herea= — C/A, b= — C/B,
m= —A/B,cosv = AR, sinv = B/R, p = —C/R, where R =
+ VA2 + B2 (sign to be so chosen that p is positive).]

6. Linethrough (x4, y,) withslopem. y — y; = m(X — X,).
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Y2= Y1
Xo — %
8. Line parallel to x axis. y = a; toy axis: X = b.
Angles and Distances If u = angle from the line with slope m, to
the line with slope m,, then

7. Linethrough (x4, y;) and (X5, ¥»). ¥ — ¥1 = (X = Xyp).

m—m

tanu =
1+ mm

If paralel, m; = m,.
If perpendicular, mm, = — 1.

If u = angle between the lines Ax + By + C = 0 and A'’x + B’y +
C' =0, then

AA' + BB’
+ V(A2 + BY(AZ + B2

cosu =
If pardlel, A/A" = B/B'.
If perpendicular, AA’ + BB’ = 0.

The equation of a line through (x;, y;) and meeting a given line
y = mx + batanangleu, is

m+ tanu

y=—%1= m(x )
The distance from (X, Yo) to theline Ax + By + C = 0is
b ‘ Axy+ By, + C
VAZ + B2

where the vertical bars mean *‘the absolute value of."”’
The distance from (X, ;) to aline which passes through (x,, y,) and
makes an angle u with the x axisis

D= (% — %) sinu— (Yo — yy) cosu

Polar Coordinates [EIg_ZT.72) Let (x, y) be the rectangular and
(r, 6) the polar coordinates of agiven point P. Thenx =r cos6;y =r
Sin6; x2 +y2=r2

Fig. 2.1.72 Polar coordinates.

Transformation of Coordinates If origin is moved to point (X, Yo),
the new axes being parallel totheold, x = xg + X', y =y, + Y.
If axes are turned through the angle u, without change of origin,

x=x cosu-—y snu y=x sinu+y cosu

The Circle
The equation of a circle with center (a, b) and radiusr is
(x—a2+(y—h>=r?
If center is at the origin, the equation becomes x? + y2 = r2. If circle

goes through the origin and center is on the x axis at point (r, 0),

equation becomes x2 + y2 = 2rx. The general equation of acircleis
x2+y2+Dx+Ey+F=0

It has center a (— D/2, — E/2), and radius = V(D/2)2 + (E/2)2 — F

(which may be redl, null, or imaginary).

Equations of Circle in Parametric Form It is sometimes convenient
to express the coordinates x and y of the moving point P in
terms of an auxiliary variable, called aparameter. Thus, if the parameter
be taken as the angle u from the x axis to the radius vector OP, then the
equations of the circle in parametric form will bex = acosu;y = a

ANALYTICAL GEOMETRY 2-19

sin u. For every value of the parameter u, there corresponds a point
(X, y) on the circle. The ordinary equation x2 + y2 = a2 can be ob-
tained from the parametric equations by eliminating u.

y
ar-=
N

Fig. 2.1.73 Parameters of acircle.

The Parabola

The parabola is the locus of a point which moves so that its distance
from a fixed line (called the directrix) is aways equal to its distance
from afixed point F (called the focus). SEEFIQ. 2.1174. The point half-
way from focusto directrix is the vertex, O. The line through the focus,
perpendicular to the directrix, is the principal axis. The breadth of the
curve at thefocusis called the latus rectum, or parameter, = 2p, wherep
is the distance from focus to directrix.

ﬂ
[
NIUO \
<

-~
L
>

Directrix

Fig. 2.1.74 Graph of parabola.

NOTE. Any section of a right circular cone made by a plane paralel to a
tangent plane of the cone will be a parabola.

Equation of parabola, principal axis along the x axis, origin at vertex

(Eg.21.73): y? = 2px.

Polar equation of parabola, referred to F as origin and Fx as axis (ELgl]
[ZL75): r = p/(1 — cos 6).

Equation of parabola with principal axis parallel toy axis: y = ax? +
bx + c¢. This may be rewritten, using a technique called completing the
square:

=a x2+bx+ b -t-c—b2
y a 4a2 4a

b 2 b2
= +—| +c-—
a[x Za] ‘"

r
p 8
X
F

Fig. 2.1.75 Polar plot of
parabola.

Fig. 2.1.76 Vertical parabola
showing rays passing through
the focus.
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Then: vertex isthe point [ b/ 2a, ¢ — b%4a]; latusrectumisp = 1/2a;
and focus is the point [— b/2a, ¢ — b?%4a + 1/4a].

A parabola has the special property that lines parallel to its principal
axis, when reflected off the inside ‘‘surface’’ of the parabola, will all
pass through the focus [E1g._2.1.76). This property makes parabolas
useful in designing mirrors and antennas.

The Ellipse

The éllipse (as shown in[Elg_Z1.77), has two foci, F and F’, and two
directrices, DH and D'H’. If P is any point on the curve, PF + PF’ is
constant, = 2a; and PF/PH (or PF’/PH’) isalso constant, = e, where e
isthe eccentricity (e < 1). Either of these properties may be taken asthe
definition of the curve. The relations between e and the semiaxes a and
b are as shown in[EIlg—ZT 78] Thus, b2 = a%(1 — €?), ae = Va2 — b2,
€2 = 1 — (b/a)2 The semilatusrectum = p = a(1l — e?) = b?a. Note
that b is aways less than a, except in the specia case of the circle, in
whichb = aande = 0.

TS

D HF\O F‘
t
ae e

a —]

O

le— O _

e

Fig. 2.1.77 Ellipse. Fig. 2.1.78 Ellipse showing

semiaxes.

Any section of aright circular cone made by aplane which cutsall the
elements of one nappe of the cone will be an ellipse; if the plane is
perpendicular to the axis of the cone, the ellipse becomes a circle.

Equation of dlipse, center at origin:

X2 y2
PR
If P = (X, y) isany point of the curve, PF = a + ex, PF' = a — ex.
Equations of the éllipse in parametric form: X = acosu, y = b
sin u, where u is the eccentric angle of the point P = (X, y). SeelFigl
[2Z1EI]
Polar equation, focus as origin, axes as in EIg. 21.791r = p/(1 — e
cos 6).
Equation of the tangent at (Xq, y;): b2x;x + a2y,y = ab2
Theliney = mx + k will be atangent if k = ++va2m? + b2

b ——
1 or y=tgw/a2—x2

Fig. 2.1.79 Ellipsein polar Fig. 2.1.80 Ellipseasa
form. flattened circle.

Ellipse as a Flattened Circle, Eccentric Angle |f the ordinatesin a
circle are diminished in a constant ratio, the resulting points will lie on
an ellipse [Eg2Z1.80). If Q traces the circle with uniform velocity, the
corresponding point P will trace the ellipse, with varying velocity. The
angle u in the figure is called the eccentric angle of the point P.

A consequence of this property is that if a circle is drawn with its
horizontal scale different from its vertical scale, it will appear to be an
elipse. This phenomenon is common in computer graphics.

The radius of curvature of an ellipse at any point P = (X, y) is

R = aZ(x?/a* + y2/b%)32 = p/snd v

where v is the angle which the tangent at P makes with PF or PF'.
At end of maor axis, R = b%a = MA; at end of minor axis, R =

a?lb = NB (seelFig_Z.L81).

N

Fig. 2.1.81 Ellipse showing radius of curvature.

The Hyperbola

The hyperbola hastwo foci, F and F’, at distances = ae from the center,
and two directrices, DH and D'H’, at distances =+ a/e from the center
[Eg2182). If P is any point of the curve, |PF — PF’| is constant,
= 2a; and PF/PH (or PF’/PH’) is also constant, = e (called the eccen-
tricity), where e > 1. Either of these properties may be taken as the

F' -~
Celel
o] a
Ls e
[¢} G-—:
ae ae

Fig. 2.1.82 Hyperbola.

definition of the curve. The curve has two branches which approach
more and more nearly two straight lines called the asymptotes. Each
asymptote makes with the principal axis an angle whose tangent is b/a.
The relations between e, a, and b are shown in[Eg_271383] b2 =
a(e? — 1), ae = Va2 + b2 e2 = 1 + (b/a)2 The semilatus rectum, or
ordinate at the focus, isp = a(e? — 1) = b%a.

I/_\
!/ \/ 2
Fr YN/
. o;
ViN ¢
|
T

|

Fig. 2.1.83 Hyperbola showing the asymptotes.

Any section of aright circular cone made by a plane which cuts both
nappes of the cone will be a hyperbola.
Equation of the hyperbola, center as origin:
X2 y?

b —
= b2—1 or y=ia\/x2—a2
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If P = (x, y) isontheright-hand branch, PF = ex — a, PF' = ex + a. If
P is on the left-hand branch, PF = —ex + a, PF' = —ex — a.

Equations of Hyperbola in Parametric Form (1) x = a cosh u,
y = b sinh u. Here u may be interpreted as A/ab, where A is the area
shaded iFQ. ZT84. (2) x = asecv,y = btanv, wherevisan auxiliary
angle of no special geometric interest.

y

Fig. 2.1.84 Hyperbola showing parametric form.

Polar equation, referred to focus as origin, axes as in[FIg. 2.1.85]
r =p/(1 — ecos 6)

Equation of tangent at (Xq, y;): b2, X — a2y,y = a?h2 Theliney =
mx + k will be atangent if k = +va2m?2 — b2

Fig. 2.1.85 Hyperbolain polar form.

The triangle bounded by the asymptotes and a variable tangent is of
constant area, = ab.

Conjugate hyperbolas are two hyperbolas having the same asymptotes
with semiaxes interchange{EIlg—2186). The equations of the hyper-
bola conjugate to x¥/a? — y?/b2 = 1isx?a? — y3b2 = — 1.

y

Fig. 2.1.86 Conjugate hyperbolas.

Equilateral Hyperbola (a = b) Equation referred to principal axes
[Eg—ZTE7): x2 — y? = a2

NoTE. p = BEIFQ_Z187). Equation referred to asymptotes as axes [FIg]
[ZI188): xy = a?%/2.

Asymptotes are perpendicular. Eccentricity = v2. Any diameter is
equal in length to its conjugate diameter.

The Catenary

The catenary is the curve in which a flexible chain or cord of uniform
density will hang when supported by the two ends. Let w = weight of
the chain per unit length; T = the tension at any point P; and T,
T, = the horizontal and vertical components of T. The horizontal com-
ponent T, is the same at all points of the curve.
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Fig. 2.1.87 Equilateral hyperbola.

The length a = T,,/w is called the parameter of the catenary, or the
distance from the lowest point O to thedirectrix DQ (Eig-Z1.89). When
aisvery large, the curveis very flat.

The rectangular equation, referred to the lowest point as origin, is
y = a[cosh (x/a) — 1]. In case of very flat arcs (alarge), y = x%/2a +
c-+ s =X+ Yex8/az + - - -, approx, so that in such a case the
catenary closely resembles a parabola.

y

Fig. 2.1.88 Hyperbolawith asymptotes as axes.

Calculus properties of the catenary are often discussed in texts on the
calculus of variations (Weinstock, ‘‘Calculus of Variations,’’ Dover;
Ewing, ‘*Calculus of Variations with Applications,”” Dover).

Problems on the Catenary [F10.Z.1.89) When any two of the four
quantities, X, y, s, T/w are known, the remaining two, and aso the
parameter a, can be found, using the following:

s=asnhz
y/x = (cosh z — 1)/z
wWx/T = z cosh z

a=xz
T = wa cosh z
s/x = (sinh 2)/z

y
fe— x P
s y
(o) Y X
~L
al K ~o
~
D Q

Fig. 2.1.89 Catenary.

NoTE. If wx/T < 0.6627, then there are two values of z, onelessthan 1.2, and
one greater. If wx/T > 0.6627, then the problem has no solution.

Given the Length 2L of a Chain Supported at Two Points A and B
Not in the Same Level, to Finda (Se€Fg. Z.1.90; b and c are supposed
known.) Let (VL2 — b?)/c = s/x; use s/x = sinh Z/z to find z. Then
a=clz

NOTE. The coordinates of the midpoint M of AB (sedEig—21090) are
%o = atanh~* (b/L), y, = (L/tanh 2) — &, so that the position of the lowest point
is determined.
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Fig. 2.1.90 Catenary with ends at unequal levels.

Other Useful Curves

The cycloid is traced by a point on the circumference of a circle which
rolls without slipping along a straight line. Equations of cycloid, in
parametric form (axes as in EIl—ZTYL)E x = a(radu — sinu), y =
a(1 — cos u), where aisthe radius of theralling circle, and rad u isthe
radian measure of the angle u through which it has rolled. The radius of
curvature at any point P is PC = 4a sin (u/2) = 2v2ay.

Fig. 2.1.91 Cycloid.

The trochoid is amore general curve, traced by any point on aradius
of the rolling circle, at distance b from the center [Eig-2.1.92). It isa
prolate trochoid if b < a, and a curtate or looped trochoid if b > a. The
equations in either casearex = aradu — bsinu,y = a — b cosu.

Fig. 2.1.92 Trochoid.

The epicycloid (or hypocycloid) is a curve generated by a point on the
circumference of acircle of radius a which rollswithout slipping on the
outside (or inside) of a fixed circle of radius ¢ [Eig—2-T93] and[Figl

y

o} A
Fig. 2.1.93 Epicycloid.

m). For the equations, put b = a in the equations of the epi- or
hypotrochoid, below.
Radius of curvature at any point P is

4a(c =
R=stin1/zu
c+2a
+
AtAR=0 aD, R=-23€23
c* 2a
y
N
P
e} A X

Fig. 2.1.94 Hypocycloid.

Special Cases If a = ¥zc, the hypocycloid becomes a straight line,
diameter of the fixed circle [EIg_Z.1.95). In this case the hypotrochoid
traced by any point rigidly connected with the rolling circle (not neces-
sarily on the circumference) will be an ellipse. If a = Yac, the curve

Fig. 2.1.95 Hypocycloid is straight line when the radius of inside circle is half
that of the outside circle.

generated will be the four-cusped hypocycloid, or astroid [F1g-Z.1.96),
whose equation is x#/3 + y23 = ¢23 |f a = c, the epicycloid is the
cardioid, whose equation in polar coordinates (axes as inN[Elg—2197) is
r = 2c(1 + cos 6). Length of cardioid = 16¢.

The epitrochoid (or hypotrochoid) isacurvetraced by any point rigidly
attached to a circle of radius a, at distance b from the center, when this

Fig. 2.1.96 Astroid.



Copyright (C) 1999 by The McGraw-Hill Companies, Inc. All rights reserved. Use of
this product is subject to the terms of its License Agreement. |Click here to view

circlerollswithout slipping on the outside (or inside) of afixed circle of
radius c. The equations are

x=(cia)cos<§u> ibcos[(liEl) u]
c c
y=(cxasn <%u) —bsinli(lt%) u:l

Fig. 2.1.97 Cardioid.

where u = the angle which the moving radius makes with the line of
centers; take the upper sign for the epi- and the lower for the hypotro-
choid. The curve is caled prolate or curtate according as b < a or
b > a. When b = a, the specia case of the epi- or hypocycloid arises.

y

S—
Q

cUP

ojx

Fig. 2.1.98 Involute of circle.

The involute of a circle is the curve traced by the end of ataut string
which is unwound from the circumference of afixed circle, of radiusc.
If QP isthefree portion of the string at any instant (ELg—ZL.98)] QP will
be tangent to the circle at Q, and the length of QP = length of arc QA;
hence the construction of the curve. The equations of the curvein para-
metric form (axes as in figure) are x = c(cosu + rad u sinu), y =
c(sin u — rad u cos u), where rad u is the radian measure of the angle
u which OQ makes with the x axis. Length of arc AP = Yzc(rad u)?;
radius of curvature at P is QP. Polar eguations, in terms of parameter

NS

Fig. 2.1.99 Spira of Archimedes.
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v(=angle POQ), arer = csecv, rad § = tanv — rad v. Here, r = OP,
and rad 6 = radian measure of angle, AOP [F1g. 2.1.98).

The spiral of Archimedes is traced by a point P which,
starting from O, moves with uniform velocity along aray OP, while the
ray itself revolves with uniform angular velocity about O. Polar equa-
tion: r = krad 6, or r = a(0°/360°). Here a = 27k = the distance
measured along a radius, from each coil to the next.

The radius of curvature at P isR = (k2 + r2)32/(2k2 + r?2).

The logarithmic spiral is a curve which cuts the radii
from O at a constant angle v, whose cotangent is m. Polar equation: r =
ae™ad? Here aisthevalue of r when 6 = 0. For large negative values of
0, the curve winds around O as an asymptotic point. If PT and PN are
the tangent and normal at P, the line TON being perpendicular to OP
(not shown in figure), then ON = rm, and PN = rv1 + m2 = r/sin v.
Radius of curvature at P is PN.

Fig. 2.1.100 Logarithmic spira.

The tractrix, or Schiele’s antifriction curve [Eig—2.1.101), is a curve
such that the portion PT of the tangent between the point of contact and
the x axisis constant = a. Its equation is

x=+a I:coslrls _ \/@]

or, in parametric form, x = = a(t — tanh t), y = a/cosh t. The x axisis
an asymptote of the curve. Length of arc BP = alog, (a/y).

X
ol M T
Fig. 2.1.101 Tractrix.
The tractrix describes the path taken by an object being pulled by a

string moving along the x axis, where theinitial position of the object is
B and the opposite end of the string begins at O.

Yy
o ———»
0.3536a P
‘ s
30° 9 . x

| ‘\ ow
e 0,6124 o =
Q707 a—

Fig. 2.1.102 Lemniscate.
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The lemniscate [FIg_21.102) is the locus of a point P the product of
whose distances from two fixed points F, F' is constant, equal to ¥2a2.
The distance FF’ = av2. Polar equa-
tion is r = avcos26. Angle be-
tween OP and the normal at P is 26.
The two branches of the curve cross
a right angles at O. Maximum y
occurs when 6 = 30° and r = aiv2,
and is equal to ¥sav2. Area of one
loop = a%/2.

The helix[[E19.Z.L.103) isthe curve
of a screw thread on a cylinder of
radius r. The curve crosses the ele-
ments of the cylinder at a constant
angle, v. The pitch, h, is the distance
8 between two coils of the helix, mea-
7', 5 sured along an element of the cylin-
INEl 3 der; hence h = 2ar tan v. Length

2 of one coil = V(2mr)2 + h2 = 271/
Fig. 2.1.103 Helix. cosv. If the cylinder isrolled out on a
plane, the development of the helix
will be a straight line, with slope
equal to tan v.

-4——-2r———>1
\

h
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DIFFERENTIAL AND INTEGRAL CALCULUS

Derivatives and Differentials

Derivatives and Differentials A function of asingle variable x may
be denoted by f(x), F(x), etc. The value of the function when x has the
value X, isthen denoted by f(xo), F(Xo), etc. The derivative of afunction
y = f(x) may be denoted by f’(x), or by dy/dx. The value of the deriva-
tive at a given point X = X, is the rate of change of the function at that
point; or, if the function is represented by a curvein the usua way (Eigl

[21107), the value of the derivative at any point shows the siope of the
curve (i.e., the slope of the tangent to the curve) at that point (positive if
the tangent points upward, and negative if it points downward, moving
to the right).

y=f(x) Q /
S 2ai)]
d
b y
dx
0 Yo Ay =dx X
X0 xot+Ax

Fig. 2.1.104 Curve showing tangent and derivatives.

Theincrement Ay (read: ‘‘deltay’’) iny is the change produced in y
by increasing x from x, to Xy + Ax; i.e., Ay = f(xg + Ax) — f(x). The
differential, dy, of y is the value which Ay would have if the curve
coincided with its tangent. (The differential, dx, of x isthe same as Ax
when x is the independent variable.) Note that the derivative depends
only on the value of X,, while Ay and dy depend not only on x, but on the
value of Ax aswell. The ratio Ay/Ax represents the secant slope, and
dy/dx the slope of tangent (sedF10.Z.1.104). If Ax is made to approach
zero, the secant approaches the tangent as alimiting position, so that the
derivative is

oy Ay Ay | _ f(><0+Ax)—f(><0)]
f(x)_dx_AIiTo I:AX]_AIiTOI: AX

Also, dy = f'(x) dx.
The symbol *‘lim’’ in connection with AX — 0 means *‘the limit, as

Ax approaches 0, of . . . ."”” (A constant c is said to be the limit of a
variable u if, whenever any quantity m has been assigned, there is a
stage in the variation process beyond which |c — u] is always less than
m; or, briefly, cisthelimit of u if the difference between c and u can be
made to become and remain as small as we please.)

To find the derivative of a given function at a given point: (1) If the
function is given only by a curve, measure graphically the slope of the
tangent at the point in question; (2) if the function is given by a mathe-
matical expression, use the following rules for differentiation. These
rules give, directly, the differential, dy, in terms of dx; to find the deriv-
ative, dy/dx, divide through by dx.

Rules for Differentiation (Hereu, v, w, . . . represent any func-
tions of avariable x, or may themselves be independent variables. aisa
constant which does not change in value in the same discussion;

e = 2.71828)
1. d(a+u) =du
2. d(au) = adu
3 du+v+w+--)=du+dv+dw+---
4. d(uv) = udv + vdu
5 dluvw . . )= (uw . . ) (%+%+d_w+>
u v w
6. dE _ vdu i udv
v v
7. d(um = mu™-1 du. Thus, d(u?) = 2u du; d(u3) = 3u? du; etc.
8 dvﬁ=d—“_
2Ju
1 du
o a(l)--2
10. d(e¥) = e du
11. d(aY) = (In a)a¥ du
du
12. dlnu=—
u

d d
13. dlogyu = Iogmeju: (04343 . . .)Fu

14. dsinu = cosudu

15. dcscu = —cot ucscudu
16. dcosu= —sinudu

17. dsecu =tanusecudu
18. dtanu = sec?u du

19. dcotu = —csc2udu
. du
20. dsin"tu =
V1—u?
21.dcsc*1u=—L
uvuz -1
22. dcoslu= du
V1—u?
23 dseclu—— 4
uvuz — 1
24. dtan~tu = du
' 1+ uw?
du
-1 = — —
25. dcot~1u 1T 0
26. dInsinu = cotudu
27. dintanu = ?du
sin 2u
28. dincosu = —tanudu
29. dIncotu = — ?du
sin 2u
30. dsinh u = cosh u du
31. deschu = —cschucothudu
32. dcoshu = sinhudu
33. dsechu = —sechutanhudu
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34. dtanhu = sech2u du
35. d cothu = — csch?u du

36, dsinh-1u = —
vuz + 1
37 dcs:hflu = _L
uvu?z + 1
38, doosh-2u = —
yuz — 1
d
30. dsech-lu= ——o
uvl — w2
du
40. dtanh~1u =
u 1-u?
du
41, th-1u =
d cof u -

42, d(w) = (W=YH(ulnudv + vdu)

Derivatives of Higher Orders The derivative of the derivative is
called the second derivative; the derivative of this, the third derivative;
and so on. If y = f(x),

d
/(9 = Dy =
" dzy
f (X) = DE = W
3
£(x) = D =—3X§ oc.

NOTE. If the notation d2y/dx? is used, this must not be treated as a fraction,
like dy/dx, but as an inseparable symbol, made up of asymbol of operation d2/dx?,
and an operand y.

The geometric meaning of the second derivativeisthis: if the original
functiony = f(x) is represented by acurve in the usual way, then at any
point where f”(x) is positive, the curve is concave upward, and at
any point where f”(x) is negative, the curve is concave downward
(Eg—25105). When f(x) = 0, the curve usualy has a point of in-
flection.

y=f{x)

I
Fig. 2.1.105 Curve showing concavity.

Functions of two or more variables may be denoted by f(x,y, . . .),
F(x,y, . . .), etc. The derivative of such afunctionu = f(x,y, . . .)
formed on the assumption that x is the only variable (y, . . . being
regarded for the moment as constants) is called the partial derivative of u
with respect to X, and is denoted by f,(x, y) or D,u, or d,u/dx, or du/ox.
Similarly, the partial derivative of u with respect toy isf,(x, y) or D,u,
or d,u/dy, or au/ay.

NOTE. In the third notation, d,u denotes the differential of u formed on the
assumption that x is the only variable. If the fourth notation, du/ax, is used, this
must not be treated as a fraction like du/dx; the 9/dx is a symbol of operation,
operating on u, and the ‘‘9x'’ must not be separated.

Partial derivatives of the second order are denoted by f,,, f,, f,,, or
by Du, D(Dyu), D2u, or by 92u/ax2, 92ulox dy, a2uldy?, the last sym-
bols being *‘inseparable.’”” Similarly for higher derivatives. Note that

fiy = fe

DIFFERENTIAL AND INTEGRAL CALCULUS 2-25

If increments Ax, Ay (or dx, dy) are assigned to the independent
variables x, y, the increment, Au, produced inu = f(X, y) is

Au = f(x + Ax, y + Ay) — f(x, y)

while the differential, du, i.e., the value which Au would have if the
partial derivatives of u with respect to x and y were constant, is given by

du = (f) - dx + (f,) - dy

Here the coefficients of dx and dy are the values of the partial deriva-
tives of u at the point in question.
If x and y are functions of athird variable t, then the equation

du dx dy
il 0 el €9

expresses the rate of change of u with respect to t, in terms of the
separate rate of change of x and y with respect to t.

Implicit Functions If f(x, y) = 0, either of the variablesx and y is
said to be an implicit function of the other. To find dy/dx, either (1)
solvefor yintermsof x, and then find dy/dx directly; or (2) differentiate
the equation through as it stands, remembering that both x and y
are variables, and then divide by dx; or (3) use the formula dy/dx =
— (f/fy), where f, and f, are the partia derivatives of f(x, y) at the
point in question.

Maxima and Minima

A function of one variable, asy = f(x), is said to have a maximum at a
point X = X, if a that point the slope of the curve is zero and the
concavity downward (see Fig. 2.1.T06); a sufficient condition for a
maximum isf’(x,) = 0and f "' (x,) negative. Similarly, f(x) has amini-
mum if the slope is zero and the concavity upward; a sufficient condi-
tion for aminimum isf’(xy) = 0and f "(Xg) positive. If f""(x,) = 0 and
f""(X) # 0, the point x, will be a point of inflection. If f'(x;) = 0
and f"(x) = 0 and f"'(x;) = 0, the point x, will be a maximum
if £"""(Xg) < 0, and aminimum if f""'(xg) > 0. It is usually sufficient,
however, in any practical case, to find the values of x which make
f’(x) = 0, and then decide, from a general knowledge of the curve or
the sign of f’(x) to the right and left of X, which of these values
(if any) give maxima or minima, without investigating the higher de-
rivatives.

y=fix) Max.
Max . Flex,
A~ Flex. .
Min,

Fig. 2.1.106 Curve showing maxima and minima.

A function of two variables, asu = f(x, y), will have a maximum at a
point (o, Yo) if at that point f, = 0, f, = 0, and f,, < 0, f,,, < 0; and a
minimum if at that point f, = 0, f, = 0, and f,, > 0, f,,, > 0; provided, in
each case, (fo)(f,,) — (f,)?ispositive. If f, = O andf, = 0, and f,, and
f,, have opposite signs, the point (x,, Yo) will bea**saddle point™* of the
surface representing the function.

Indeterminate Forms

Inthefollowing paragraphs, f(x), g(x) denote functionswhich approach
0; F(x), G(x) functions which increase indefinitely; and U(x) afunction
which approaches 1, when x approaches a definite quantity a. The prob-
lem in each caseisto find the limit approached by certain combinations
of these functions when x approaches a. The symbol — is to be read
‘*approaches’”’ or ‘‘tendsto.”’

Case 1. “*0/0." To find the limit of f(x)/g(x) when f(x) — 0 and
g(x) — 0, use the theorem that lim [ f(x)/g(x)] = lim [f'(x)/g'(X)],
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where f’(x) and g’(x) are the derivatives of f(x) and g(x). This second
limit may be easier to find than the first. If f’(x) — 0and g’'(x) — O,
apply the same theorem a second time: lim [ f'(x)/g'(x)] = lim [ f " (x)/
g”(x)], and so on.

CASE 2. ‘‘oof0” If F(X) — o and G(x) — oo, then lim [F(x)/
G(x)] = lim [F'(x)/G'(xX)], precisely asin Case 1.

Case3. ‘‘0- .’ Tofind thelimit of f(x) - F(x) whenf(x) — 0and
F(x) — oo, write lim [f(X) - F(x)] = lim{f(X)/[VF(x)]} or = lim
{F(X)/[/f(x)]}, then proceed asin Case 1 or Case 2.

Case 4. The limit of combinations ‘0%’ or [f(x)]9®; ‘1=’ or
[U(X)]F®); o0’ or [F(x)]°™® may be found since their logarithms are
limits of the type evaluated in Case 3.

CAseS. “foo — . If F(X) — o and G(X) — o, write

1/G(x) — UF(x)
V[F(x) - G(X)]
then proceed as in Case 1. Sometimes it is shorter to expand the func-

tions in series. It should be carefully noticed that expressions like 0/0,
oofoo, etc., do not represent mathematical quantities.

lim[F(x) — G(X)] = lim

Curvature

Theradiusof curvature R of aplane curve at any point P (Elg21.107) is
the distance, measured along the normal, on the concave side of the
curve, to the center of curvature, C, this point being the limiting position
of the point of intersection of the normals at P and a neighboring point
Q, as Q is made to approach P aong the curve. If the equation of the
curveisy = f(x),

ds 1+ (y)A2
du yu

where ds = Vdx2 + dy? = the differential of arc, u = tan=1 [f'(x)] =
the angle which the tangent at P makes with the x axis, andy’ = f’(x)
andy” = f"'(x) arethefirst and second derivatives of f(x) at the point P.
Note that dx = dscosu and dy = dssin u. The curvature, K, at the point
P,isK = /R = du/ds; i.e., the curvature isthe rate at which theangleu
is changing with respect to thelength of arc s. If the Slope of the curveis
small, K =~ f"(x).

R=

P
Fig. 2.1.107 Curve showing radius of curvature.

If the equation of the curve in polar coordinates isr = f(6), where
r = radius vector and 6 = polar angle, then

S L (0
Torz—rr 4+ 2(0)2

wherer’ = f’(6) andr” = f"(6).

The evolute of a curve is the locus of its centers of curvature. If one
curve is the evolute of another, the second is called the involute of the
first.

Indefinite Integrals

Anintegral of f(x) dxisany function whose differential isf(x) dx, andis
denoted by [f(x) dx. All the integrals of f(x) dx are included in the
expression [f(x) dx + C, where [f(x) dx is any particular integral, and
C is an arbitrary constant. The process of finding (when possible) an
integral of a given function consists in recognizing by inspection a
function which, when differentiated, will produce the given function; or

in transforming the given function into aform in which such recognition
is easy. The most common integrable forms are collected in the follow-
ing brief table; for a more extended list, see Peirce, ‘‘ Table of Inte-
grals’’ Ginn, or Dwight, ‘‘ Table of Integrals and other Mathematical
Data,’’ Macmillan, or ** CRC Mathematical Tables.”

GENERAL FORMULAS

l.fadu=ajdu=au+C

2.j(u+v)dx=fudx+fvdx

3. [udv=uv— [ vdu (integration by parts)

4. ff(X) dx = ff[F(y)]F’(Y) dy, x = F(y)
(change of variables)
5. f dyf f(x,y) dx = f dxf f(x,y) dy

FUNDAMENTAL INTEGRALS

n+1
+1
dx
7. f7=lnx+c=lncx

X
6. x"dx=n + C,whenn# —1

8.je’<dx=e’<+C

g.fsinxdx:fcosx+c
10.fcosxdx:sinx+c
ll.f .dX = —cotx+ C
sinZ x
dx
12. =t +C
fcoszx anx
dx .
13. =s8n1x+C=-cosix+C
V1 — x2

dx
4 | ——==tanlx+ C=—cot"1x+ C
1+x2

RATIONAL FUNCTIONS

(a+ bx)n+1
15. + n = —_—
5 f(a bx)" dx 1D
dx 1 1
. == + +C== +
lefa+bx bIn(al bx) + C bInc(a bx)
dx 1
[ =
17{[)(n "= Dx 1 Cc except whenn = 1
dx 1
. = — +
18 (a + bx)2 b(a + bx) c
dx 1+ x
19. [ —— = ¥%21In +C=tanh 1x+ C,whenx<1
1-—x2 1-x
-1
zo.J 2dX =Vz|nx +C=—coth-x+ C,whenx>1
x2 -1 X+ 1 _
21.f dx =i_tan*1(\/BX>+C
a+bx2 Vab \Va
+
zz.j A __1 Yabdbx, o [a>0,b> 0]
a—bx? 2yab_ vab - bx
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23, j dx _
a + 2bx + cx?

1 b+ cx
tan—1 +C
vac — b2 vac — b2 J
1 vbZ—ac — b — cx
In +C
2vb2 — ac
1
- tanh—1
Vb2 — ac

» [ac — b2 > (]

vb2 —ac + b + cx b [b2 — ac > 0]

Vb2 — ac J
+ C,whenb2 = ac

fa+2bx+cx2 b+cx

(m + nx) dx
= — + + cox2
f a+2bx+cx2 2c In @+ 2bx+ o)

—nb dx
c a + 2bx + cx?
f(x) dx . . ) )
26. In f 2T 2 o if f(x) is a polynomial of higher than the
first degree, divide by the denominator before integrating
dx 1
(@a+2bx+ P 2(ac— by(p - 1)

b + cx
(a + 2bx + cx?)p-1
2p — 3)c dx
2(ac — b?9)(p—1) ) (a+ 2bx + cx3)p-1
(m+nx)dx n
2 f 2¢c(p - 1) 8

(a+ 2bx + cxdp
1 —nb dx

(a + 2bx + cx?)P

(a + 2bx + cx®)p-1
_ XM a + bx)n+l
29. f xm 1(a + bX)n dx = W
(m-1a
T (m+nb
_ XM(@ + bx)" N na
m+n m+n

XM=2(a + bx)" dx

f xm~1(a + bx)n~1 dx

IRRATIONAL FUNCTIONS

30. f\/a+ bxdx=%(\/a+ bx)3 + C

31.f X _2aT+c
va+bx b

2
32. — (3mb — 2an + nbx)va + bx + C

va + bx 3b2

33. f L; substitutey = va + bx, and use 21 and 22
(m + nx)va + bx
” f f(x, Va + bx)

= dx; substitute Va + bx = y
F(x, Va + bx)

35. i—sm1 +C=—cos1— +C
Va2 — x2 a a
dx —_— . X
36.f—=In(x+w/a2+x2)+C=smh*1—+C
Va2 + x2 a
37. L=In(x-s-\/xz—a?)+C=cosh*1§+C
Vx2 — a2 a

38.f dx
va + 2bx + cx?
:v—l_ln(b+ cx + Vcva + 2bx + cx?) + C, wherec > 0
c

DIFFERENTIAL AND INTEGRAL CALCULUS 2-27

+
:i_sinhflu+c,whenacfb2>o
Ve vac — b2
1 b+
= — CO! *1—CX+C,whenb27ac>0
Ve Vb2 — ac
- +
=l 2EX L cowhenc<o
v—c Vb2 — ac
+ .
39. _(mHmydx E\/a-t-be-s-cx2
va+ 2bx+cx2 ¢
—nbj dx
c va + 2bx + cx2
40 J’ X dx _xm*1X_(m71)afxm*2dx
") VaTt 2bx + o mc mc X
_(2m-1b

Xxm-— 1
J dx when X = va + 2bx + cx2
mc X

I X — a2 _

41.fda2+x2dx=EVa2+x2+—ln(x+\/a2+x2)+C
=—\/a2+x2+?smh1 +C

— X .

42. \/a2—x2dx=—\/a2—x2+—sm*1—+C
2 2 a

I X — a2 -

43. w/xz—azdx=5w/x2—a2——ln(x+\/x2—a2)+C

ﬁvm—%oosh 1Xic

N

X -
b \/a + 2bx + cx?

ac — sz dx
+ +C
2c va + 2bx + cx2

44, fw/a+2bx+cx2dx=

TRANSCENDENTAL FUNCTIONS

X
45.f -2
Ina

46. f X"e dx

Xnex n nin-—1 n!
= —_— 1—_+¥_...i + C
a ax a2x? anxn

47. flnxdx=xlnx—x+C

ag |- X 1. ¢
X X X
(Inx)n
49. dx = Inx)r+t + C
f " — (M)

50. fsinzxdx= —Y2sin2x + ¥Y2x+ C

= —Y2sinxcosx + ¥2x + C

51. fcosZde:%sianJrl/szrC
=Y289nxcosx + ¥2x + C
52. J'sinmxdx:fcosmerC
53. fcosmdeZS'nmXJrC
+ —
54. sinmxcosnxdx=—cos(m n)x_cos(m n)X+C
2(m + n) 2(m - n)
i - i +
55. sinmxsinnxdx=sm(m n)x_sm(m nx
2(m — n) 2(m + n)
sn(m—-n sn(m-+n
56. jcos mXx cos Nx dx = ( )X ( )X+ C
2(m—n) 2(m + n)
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57. ftanxdx:flncosx+c

58. fcotxdx:lnsinx-rc

59. i =Intan§+ C
sinx 2
60. £=Intan <3+—> +C
cosx 4
X

61. tan
1+ cosx cosx 2

62. cot +C
fl—cosx 2
fsmxcosxdxf Yadn2x + C

64. =Intanx + C

cosxsn""1x n-1 .
65. fsm"xdx= - + - fsm"*zxdx
sinxcos"1x n-—-1
66.* fcos*xdx= ; + ; jcos"—Zxdx
tan"~1x
67. ftan“xdx: 7jtan"*2xdx
n—1
cotn—1x
68. cot"x dx = fﬁffcotnfzxdx
dx COS X n—2 dx
69. - = - - + -
sin" x (n—1sn~1x n-—1]J sin"=2x
dx sin x n-2 dx
70. = +
cos"x (n—1cos"ix n-—1]J cos"2x

. sinP*+1x cosi—1x
711 | sinPxcostxdx = —88

p+aq . .
-1 sinP~1x cos?tlx
+q— sinPxcos?2xdx = - —mM8M8M—
p+aq p+q
p—1 .
+ SinP~2 x cos? x dx
i +1 p+q+1
. sin~P*1x cosa+1x
72.1 fsm‘pxcosqxdx= -——
p—1
-q-2
+&fsinfp+2xcosqxdx
p—1
inP+1 —q+1
73.1 fsinpxcos*qxdx:w
q-1
-p-—-2
+&fsinpxcos*q“xdx
qg-—1

+
(-\/a b'[arl J/zx> C,

when a2 > b2,

24 f dx
a+ bcosx

1 Inb+acosx+sinxw/b27a2

vaZz — b2 b2

=— + C,
vb2 — a2 a+ bcosx
when a2 < b2,
( —tanl/zx) + C,when az < b2
\/bz—a2
cos X dx dx
=———| —+C
a+ bcosx b b a + bcosx
sin x dx 1
=-——In(a+bcosx) +C
fa+ bcosx b ( )

* If nisan odd number, substitute cosx = zor sinx = z
T1f por gisan odd number, substitute cosx = zor sinx = z

+ + Csi
77'IA B cos x Cs.mde:Af dy
a+ bcosx + csinx a-+ pcosy
cosy dy

+(BCOSU+CQnu)fm

inyd
—(Bsinu—Ccosu)fM,whereb=pcosu,c=p
a+ pcosy
snuandx —u=y
inbx — b cosb
78. | exsinbxdx = 230X DK ey ¢
a2 + b2
bx + bsinb
79. [ excosbxax = ASSXEDSNDX o
a + b2

80. fsm*lxdx: xsnix+VlI—x2+C
81l. | cosixdx=xcosix—VvI—x2+C
82. | tan"ixdx = xtanix—%In(1+x3 +C
83. | cot™Ixdx=xcot™x+ ¥In(1+x?) + C
84. | sinhxdx =coshx + C
85. | tanhxdx =Incoshx + C
86. | coshxdx=snhx + C
87. | cothxdx =Insinhx + C
88. | sechxdx =2tan (&) + C
89. | cschxdx = Intanh (x/2) + C
90. | sinl2xdx = ¥2sinh x coshx — ¥2x + C

91. | cosh2xdx =Y¥2sinhxcoshx + ¥2x + C

'H%%%’H%’H%’H%’H

92. fsechzxdx=tanhx+c

93. fcschzxdx= —cothx + C

Hints on Using Integral Tables It happens with frustrating fre-
quency that no integral table liststheintegral that needsto be evaluated.
When this happens, one may (a) seek a more complete integral table,
(b) appeal to mathematical software, such as Mathematica, Maple,
MathCad or Derive, (c) use numerical or approximate methods, such as
Simpson'’s rule (see section ‘*‘Numerical Methods''), or (d) attempt to
transform the integral into one which may be evaluated. Some hints on
such transformation follow. For a more complete list and more com-
plete explanations, consult a calculus text, such as Thomas, *‘ Calculus
and Analytic Geometry,”” Addison-Wesley, or Anton, *‘ Calculus with
Analytic Geometry,”” Wiley. One or more of the following *‘tricks”
may be successful.

TRIGONOMETRIC SUBSTITUTIONS

1. If an integrand contains V(a2 — x2), substitute x = a sin u, and
V(a2 — x?) = acosu.

2. Substitute x = atan u and V(x2 + a?) = a sec u.

3. Substitute x = asec uand V(x2 — a?) = atanu.

COMPLETING THE SQUARE

4. Rewriteax2 + bx + ¢ = a[x + b/(2a)]2 + (4ac — b?)/(4a); then
substitute u = x + b/(2a) and B = (4ac — b?)/(4a).
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PARTIAL FRACTIONS

5. For aratio of polynomials, where the denominator has been com-
pletely factored into linear factors p(x) and quadratic factors ¢(x),
and where the degree of the numerator is less than the degree of the
denominator, then rewrite r (X)/[ py(X) . . . p(X¥)aq(¥) . . . d(X)] =
Adpi(X) + - AJP(X) + (Bix + Cl(X) + -+ (Bx +
Crnd/ ().

INTEGRATION BY PARTS
6. Change the integral using the formula

fudv=uv—jvdu

where u and dv are chosen so that (a) v is easy to find from dv, and
(b) v duis easier to find than u dv.

Kasube suggests (‘‘A Technique for Integration by Parts’’ Am.
Math. Month., vol. 90, no. 3, Mar. 1983): Choose u in the order of
preference LIATE, that is, Logarithmic, Inverse trigonometric, Alge-
braic, Trigonometric, Exponential.

ExAmPLE. Find f X In x dx. The logarithmic In x has higher priority than

does the algebraic x, so let u = In (x) and dv = x dx. Then du = (1/x) dx;
f vdu= (x¥2)Inx — f (X3 2)(UUx) dx = (x?/2)

v=x2/2,sofxlnxdx=uvf

Inx — Jxlz dx = (x¥2) Inx — x%4 + C.

Definite Integrals The definite integral of f(x) dx from x = a to
b
X = b, denoted byf f(x) dx, is the limit (as n increases indefinitely)

of asum of nterms:a

b
f f(x) dx = lim [f(x)) Ax + f(x;) Ax + f(Xg) Ax + - - - + f(x,) AX]
a n—>o

built up as follows: Divide the interval from a to b into n equal parts,
and call each part Ax, = (b — a)/n; in each of these intervals take a
value of X (say, Xy, X5, - - . , X,), find the value of the function f(x) at
each of these points, and multiply it by Ax, the width of the interval;
then take the limit of the sum of the terms thus formed, when the
number of terms increases indefinitely, while each individua term ap-
proaches zero.

b
Geometrically, f f(x) dx isthe area bounded by the curvey = f(x),

a
the x axis, and the ordinates x = a and x = b (ElQ—ZTTOR] i.e., briefly,
the **area under the curve, from a to b.”’ The fundamental theorem for
the evaluation of a definite integral is the following:

Lbf(x) dx = I:j f(x) dx]x:b - I:j f(x) dx]xza

i.e., thedefiniteintegral isequal to the difference between two values of
any one of the indefinite integrals of the function in question. In other
words, the limit of a sum can be found whenever the function can be
integrated.

y=f{x)

| a b

Fig. 2.1.108 Graph showing areas to be summed during integration.

DIFFERENTIAL AND INTEGRAL CALCULUS 2-29

Properties of Definite Integrals

o= L0

MEAN-VALUE THEOREM FOR INTEGRALS

fb F(x)f(x) dx = F(X) fbf(x) dx

provided f(x) does not change sign from x = ato x = b; here X is some
(unknown) value of x intermediate between a and b.

MEAN VALUE. The mean value of f(x) with respect to x, between a
and b, is

- 1 b
f—bTa af(X)dX

b
f(x) dx,

f(x) dx may be replaced by itsvaluein terms of anew variable t and dit,
and x = a and X = b by the corresponding values of t, provided that
throughout the interval the relation between x and t is a one-to-one
correspondence (i.e., to each value of x there corresponds one and
only one value of t, and to each value of t there corresponds one and

x=b g(b)
only one value of x). SOJ f(x) dx = j f(g(t)) g'(t) dt.
X=a t=g(a)

THEOREM ON CHANGE OF VARIABLE. |n evaluating

DIFFERENTIATION WITH RESPECT TO THE UPPER LIMIT.  |f bisvariable,

b
then j f(x) dx isafunction b, whose derivative is
a

d (b
%L f(x) dx = f(b)

DIFFERENTIATION WITH RESPECT TO A PARAMETER

b b 5
K f(X,C)dXZf de
ac J, . oC

Functions Defined by Definite Integrals The following definite in-
tegrals have received specia names:

1. Elliptic integral of the first kind = F(u, k) = f L
0o V1 — kZ2sin2x
when k2 < 1.

u
2. Ellipticintegral of the second kind = E(u, k) = f V1 — k2sin2x
0

dx, when k2 < 1.
3, 4. Complete dlliptic integrals of the first and second kinds; put
u=7/2in (1) and (2).

2 X
5. The probability integral = —_f e ¥ dx.
v Jo

6. The gamma function = I'(n) = f XN~ leg=x dx.
0

Approximate Methods of Integration. Mechanical Quadrature
(See also section ‘*Numerical Methods.””)

1. Use Simpson’s rule (see aso Scarborough, ‘‘Numerical Mathe-
matical Analyses,”” Johns Hopkins Press).

2. Expand the function in a converging power series, and integrate
term by term.

3. Plot the area under the curve y = f(x) from x = a to x =
b on squared paper, and measure this area roughly by ‘‘counting
squares.”’

Double Integrals Thenotation [[ f(x, y) dy dx means [[[f(X, y) dy]
dx, thelimits of integration in theinner, or first, integral being functions
of x (or constants).
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ExamPLE. To find the weight of a plane area whose density, w, is variable,
say w = f(x, y). Theweight of atypical element, dx dy, isf(x, y) dx dy. Keeping x
and dx constant and summing these elements from, say, y = Fy(X) toy = F5(x), as

determined by the shape of the boundary [EIg—ZII09), the weight of a typical
strip perpendicular to the x axisis

y=Fa(x)
dx f f(x,y) dy
y=Fi(x)

Finally, summing these strips from, say, x = ato x = b, the weight of the whole

areais
j: [dx fy :;)f(x, y) dy:l or, briefly, fj f(x,y) dy dx

y = Fp(x)

-F (x)

ob-mm
oglk-----

ok

Fig. 2.1.109 Graph showing areas to be summed during double integration.

Triple Integrals  The notation fff f(x, y, 2 dz dy dx means

JUL Jrocvee] oo

Such integrals are known as volume integrals.

ExAMPLE. To find the mass of a volume which has variable density, say,
w = f(x, Y, 2). If the shape of the volume is described by a < x < b, Fy(x) <
y < Fy(x), and Gy(X, y) < z < Gy(X, y), then the mass is given by

Fo) [Galx.y)
f f f f(x,y, 2) dzdy dx

Fi() JGix.y)

SERIES AND SEQUENCES

Sequences

A sequence is an ordered list of numbers, X, X5, . . ., Xy .+ . -

An infinite sequence is an infinitely long list. A sequence is often
defined by afunctionf(n),n=1,2,. . . . Theformuladefining f(n) is
called the general term of the sequence.

The variable n is called the index of the sequence. Sometimes the
index is taken to start with n = O instead of n = 1.

A sequence converges to alimit L if the general term f(n) has limit L
as n goes to infinity. If a sequence does not have a unique limit, the
sequenceissaid to ‘‘diverge.”’ There are two fundamental waysafunc-
tion can diverge: (1) It may become infinitely large, in which case the
sequence is said to be ‘‘unbounded,”” or (2) it may tend to aternate
among two or more values, as in the sequence x, = (— )"

A sequence alternates if its odd-numbered terms are positive and its
even-numbered terms are negative, or vice versa

Series

A series is a sequence of sums. The terms of the sums are another
sequence, X;, X, . . . . Then the series is the sequence defined by

S =X+ X+ X, = i ;. The sequence s, is also called the

sequence of partial sums of thelse|1'ies.

If the sequence of partial sums converges (resp. diverges), then the
seriesissaid to converge (resp. diverge). If thelimit of aseriesis S, then
the sequence defined by r,, = S — s, is called the **error sequence’” or
the **sequence of truncation errors.”’

Convergence of Series THEOREM. If a seriess, = X, + X, +

- + X, converges, then it is necessary (but not sufficient) that the
sequence X, has limit zero. A series of partial sums of an alternating
sequence is called an alternating series.

THEOREM. An alternating series converges whenever the sequence
X, has limit zero.

A seriesisageometric seriesif itstermsare of theformar™. Thevaue
r iscalled theratio of the series. Usually, for geometric series, theindex
is taken to start withn = O instead of n = 1.

THEOREM. A geometric series with x, = ar", n =0, 1, 2, . . .,
convergesif and only if —1 <r < 1, and then the limit of the seriesis
a/(1 — r). The partial sums of a geometric seriesare s, = a(1 — rm/
@a-r.

The series defined by the sequence x, = I/n,n = 1,2, . .. ,is
called the harmonic series. The harmonic series diverges.

A series with each term x, > O iscalled a*‘ positive series.”’

There are a number of tests to determine whether or not a positive
series s, converges.

1. Comparisontest. If ¢; + ¢, + - - -
converges, and if 0 < x, < c,, then the seriesx; + x, + - - -
converges.

Ifd, +d, + - + d, diverges and x, > d,, then x; + X, +

- + x, dso diverges.

2. Integral test. If f(t) isastrictly decreasing function and f(n) = x,

+ ¢, is a positive series that
+ X, dso

then the series s, and the integral f f(t) dt either both converge or both
1

diverge.

3. P test. The series defined by x, = 1/nP converges if p > 1 and
divergesif p= 1orp < 1. If p = 1, then thisis the harmonic series.

4. Ratiotest. If thelimit of the sequence x,, . /X, = r, then the series
divergesif r > 1, and it convergesif 0 < r < 1. Thetest isinconclusive
ifr=1

5. Cauchy root test. If L isthelimit of the nth root of the nth term,
lim x¥n, then the series converges if L < 1 and diverges if L > 1. If
L = 1, then the test is inconclusive.

A power series is an expron of the form a; + a;x + a,x? +

- or 2 axi.

i=0

The range of values of x for which a power series converges is the
interval of convergence of the power series.

General Formulas of Maclaurin and Taylor If f(x) and al itsderiv-
atives are continuous in the neighborhood of the point x = 0 (or x = a),
then, for any value of x in this neighborhood, the function f(x) may be
expressed as a power series arranged according to ascending powers of
x (or of x — a), as follows:

U

f(x) = 1(0) + ﬂ X + 2(0) 2 10 fw(o)
+ (n:—l)g') xn—1 4+ (P)x" (Maclaurin)
f(x) = () + & (a) g+ ”(a) (x — a2 + —2 ,,,(a) (x — a) +
+ f(‘” S x—ar s Q- A (Tayion

Here (P,)x", or (Q,)(X — a)", iscalled the remainder term; the values
of the coefficients P, and Q,, may be expressed as follows:

P, = [fO()])/n! = [(1 — )"~ H O)(tx)]/(n — 1)!
Q, = {f™[a + s(x — a)]}/n!
={1 -t~ Y®™a+ t(x — a)]}/(n — 1)!

where sand t are certain unknown numbers between 0 and 1; the sform
is due to Lagrange, the t form to Cauchy. _

The error due to neglecting the remainder term islessthan (P ,,)x", or
(Q.)(x — @), where P, or Q,, is the largest value taken on by P, or
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Q,, When sor t rangesfrom 0to 1. If thiserror, which depends on both n
and x, approaches 0 as n increases (for any given value of x), then the
general expression with remainder becomes (for that value of x) a con-
vergent infinite series.

The sum of the first few terms of Maclaurin’s series gives a good
approximation to f(x) for values of x near x = 0; Taylor’sseriesgivesa
similar approximation for values near x = a.

The MacLaurin series of some important functions are given below.

Power series may be differentiated term by term, so the derivative
of a power series ag + ayx + a,x2 + - - - + ax"isa; + 2a,x +
-+ +na,Xx"" L . . . The power series of the derivative has the same
interval of convergence, except that the endpoints may or may not
be included in the interval.

Series Expansions of Some
Important Functions
The range of values of x for which each of the seriesis convergent is
stated at the right of the series.
Geometrical Series

l =<}
1_X=on" -1<x<1
ne
* +n—1)!
;:1+EM n —1<x<1
12— x)m = (m— 1)l

Exponential and Logarithmic Series

X X2 X3 4

m m2

a><=e"'X:1+l! o

m3
2 —x3 P
X2 + 3 X3 +
[a>0 —o<x<+0o]
where m = In a = (2.3026)(l0g,, &).
X2 x3 x* x5

IN(AL+X) =X =+ — =

—1l<x<+1
23 25 [ X ]

— = - - —_— - ... —1l1<x<+
In(1-x) X > 3 7 3 [-1<x 1]
1+x x5 x5 X
= +=+=+=+- - -l<x<+
In<l 2()( 3 5 7 ) [-1<x 1]

2(1+1+1+1+ )
X 3x3 bx5 X7

[x<—=lor+1<YX]

Inx = 2 x—1+1 x—1 3+1 x—1 5+”.
x+1 3\x+1 5\x+1

[0<x<o]

In@+x)=Ina+2 X +1 X ’
2a+x 3 \2a+tx

(w5
+_ +"'
5\ 2a+x

[0<a<+w, —a<x< -+

Series for the Trigonometric Functions In the following formulas,
all angles must be expressed in radians. If D = the number of degrees
in the angle, and x = its radian measure, then x = 0.017453D.

. x3 x5 X7
snx=x—§+§—ﬁ+--~

X2 x4 x8 x8
cosx=1—E+Z—a+§—~-

[-oe<x <+

[0 < X< +00]

ORDINARY DIFFERENTIAL EQUATIONS 2-31

nx=xt+ Sy 28, I 82,
3 15 315 2835

[-7l2<x<+72]

Cotx—__i_x_s_z_XB_X_7_... [_ <X<+]
3 45 945 4725 m g

. 2 3ys 5y
ly=y+Z + 2 + 2 ... —1=y=+
SMYEYTE T 0 T 1 [Fl=y=+1]

_ y2ys oy’
ly=y-Z 4+ L 4 —l=sy=+1
anty=y-Z++-3 [ y ]

cosly = Yo — sin7ly; cotly = Yo —tanly.
Series for the Hyperbolic Functions (X a pure number)

x3 x5 X

sinhx:x+§+§+ﬁ+ [—o0 < x <o)
x4 X8
COShX=1+§+Z'Fa+ [—o0 < x < )
_ T A i
ly=y— — 4 — — —=— —l<y<+
S =Y T 0 T 112 [Fl<y<+1
tanh*ly—y+y+y—5+y7+ [-1l<y<+1]
3 5 7

ORDINARY DIFFERENTIAL EQUATIONS

An ordinary differential equation is one which contains asingle indepen-
dent variable, or argument, and a single dependent variable, or function,
with its derivatives of various orders. A partial differential equation is
one which contains a function of several independent variables, and its
partial derivatives of various orders. The order of adifferential equation
isthe order of the highest derivative which occursinit. A solution of a
differential equation is any relation among the variables, involving no
derivatives, though possibly involving integrations which, when substi-
tuted in the given equation, will satisfy it. The general solution of an
ordinary differential equation of the nth order will contain n arbitrary
constants.

If specific values of the arbitrary constants are chosen, then asolution
iscalled aparticular solution. For most problems, al possible particular
solutionsto adifferential equation may be found by choosing valuesfor
the constants in a general solution. In some cases, however, other solu-
tions exist. These are called singular solutions.

EXAMPLE. The differential equation (yy’)? — a? — y? = 0 has general solu-
tion (x — ¢)? + y? = a2, where cis an arbitrary constant. Additionally, it has the
two singular solutionsy = aandy = — a. The singular solutions form two parallel
lines tangent to the family of circles given by the general solution.

The example illustrates a general property of singular solutions; at
each point on a singular solution, the singular solution is tangent to
some curve given in the general solution.

Methods of Solving Ordinary
Differential Equations

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

1. If possible, separate the variables; i.e., collect al the x'sand dx on
one side, and al the y's and dy on the other side; then integrate both
sides, and add the constant of integration.

2. If the equation is homogeneous in x and y, the value of dy/dx in
terms of x and y will be of the form dy/dx = f(y/x). Substitutingy = xt
will enable the variables to be separated.

dt
Solution: | = ——+C
ution: log, X f M1
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3. The expression f(x, y) dx + F(x, y) dy is an exact differential if

%},/y) dF(X y) (=P, say). In this case the solution of f(x,y)
dx + F(x,y) dy Ois

JE(x, y) dx + J[F(x,y) — JPdX]dy=C
or JE(X, y)dy + J[f(x,y) — [Pdy]dx=C

4. Linear differential equation of the first order: (;—di +fx)-y=

F(x).
Solution: 'y = e P[fePF(x) dx + C], where P = [f(x) dx

d
5. Bernoulli’s eguation: d—i + f(x) -y = F(x) - y". Substituting

y1—n = vgives (dv/dx) + (1 — n)f(x) - v= (1 — n)F(x), whichislin-
ear inv and x.

6. Clairaut’sequation: y = xp + f(p), where p = dy/dx. Thesolution
consists of the family of lines given by y = Cx + f(C), where C isany
constant, together with the curve obtained by eliminating p between the
equationsy = xp + f(p) and x + f’(p) = 0, wheref'(p) isthe deriva-
tive of f(p).

7. Riccati’s equation. p + ay? + Q(x)y + R(x) = 0, where p =
dy/dx can be reduced to a second-order linear differential equation
(d2u/dx?) + Q(x)(du/dx) + R(x) = 0 by the substitution y = du/dx.

8. Homogeneous equations. A function f(x, y) is homogeneous of
degreenif f(rx, ry) = rmf(x, y), for al valuesof r, x, and y. In practice,
thismeansthat f(X, y) looks like apolynomial in the two variables x and
y, and each term of the polynomial has total degree m. A differential
equation is homogeneous if it has the form f(x, y) = 0, with f homo-
geneous. (xy + x2) dx + y2dy = 0 is homogeneous. Cos (xy) dx +
y?dy = Oisnot.

If an equation is homogeneous, then either of the substitutionsy = vx
or x = vy will transform the equation into a separable eguation.

9. dy/dx = f[(ax + by + c)/(dx + ey + g)] is reduced to a homoge-
neous equation by substitutingu = ax + by + ¢c,v=dx + ey + g, if
ae—bd=0,andz= ax + by,w=dx + eyif ac — bd = 0.

DIFFERENTIAL EQUATIONS OF THE SECOND
ORDER

10. Dependent variable missing. If an equation does not involve the
variable y, and is of the form F(x, dy/dx, d2y/dx?) = 0, then it can
be reduced to a first-order equation by substituting p = dy/dx and
dp/dx = d2y/dx2.

11. Independent variable missing. If the equation is of the
form F(y, dy/dx, d?y/dx?) = 0, and so is missing the variable x, then it
can be reduced to a first-order equation by substituting p = dy/dx and
p(dp/dy) = d2y/dx2.

d?y
F = —n2y.
Solution: y = C; sin (nx + C,), ory = Cysinnx + C, cos nx.
2
13. d_y = +n?y.
Solution: y = C; sinh (Nx + C,), or y = C,e™ + C,e ™
d
. dy
Solution: X = | ——— + C,, where P = | f(y) dy.
VC, + 2P

dzy
15. m = f(X)

Solution: y= f Pdx + Cix + C, where P = f f(x) dx,

or y:fofxf(x)dx+C1x+C2.

2
16. Y _ ¢ (dy> Puttlnggy—zg dz

dx? dx2  dx
dz zdz
X—J’@%—Cl, and y = f(z)

then eliminate z from these two equations.
. I d?
17. The equation for damped vibrations: d_x)zl +2b ;—‘Z +a? =0.

Casel. Ifaz—b2>0, letem=+vaz— b2

Solution:

y=Ce™sin(mx + C,) or y= e ™C;sin(mx) + C, cos (mx)]

Case2. If a2 — b2 =0, solutionisy = e (C; + C,X).
Case3. Ifa2z—b2<0,letn=+vbh2— a2
Solution:

y = C,e ™ sinh (nx + Cy,) or

d?y dy
18. F+2bd—+a2y:0.

Solution: y =

y= Caef(bJr nx 4 C4ef(bf n)x

— + Y1, Wherey, = the solution of the corresponding

equation with second member zero [see type 17 above].
dzy dy
19. +2b—
dx2 dx
Solution: y = Rsin(kx — ) +vy;
whereR = c/V(a2 — k?)2 + 4b2%k?2, tan S= 2bk/(a2 — k?), andy, = the
solution of the corresponding eguation with second member zero [see
type 17 above].
20. % + ZbQ + a2y = f(x).
Solution: y = Rsn kx—=9) +vy;
where R = c/V(a2 — k?)2 + 4b2k?2, tan S= 2bk/(a2 — k?), andy, = the
solution of the corresponding equation with second member zero [see
type 17 above].
If b2 < a2,

l [ J’i f : ]
=———— | e | e™xf(x) dx — e™x | e ™Xf(x) dx
Yo = oz (%) )

wherem, = —b + Vb2 — a2andm, = —b — Vb2 — a2
If b2 < a2 let m = Va2 — b2, then

+ a2y = csin (kx).

Yo = % e hx I:sin (mx) f e cos (mx) - f(x) dx

— cos (mx) f e sin (mx) - f(x) dx:l

If b2 = a2y, = ebx xj ef(x) dx — f X - € f(x) dx] .

Types 17 to 20 are examples of linear differential equations with
constant coefficients. The solutions of such equations are often found
most simply by the use of Laplace transforms. (See Franklin, *‘ Fourier
Methods,”” pp. 198—229, McGraw-Hill.)

Linear Equations
For the linear equation of the nth order

A(X) dry/dx™ + A, _1(x) d—ly/dxn=1 + - - -
+ Ai(X) dy/dx + Ay(X)y = E(X)

the general solutionisy = u + cu; + cu, + - - - + ¢yUu,. Here u,
the particular integral, is any solution of the given equation, and uj,
U, . . ., U, form afundamenta system of solutions of the homoge-
neous equation obtained by replacing E(x) by zero. A set of solutionsis
fundamental, or independent, if its Wronskian determinant W(x) is not
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zero, where

u, U, . e Uy,

U Uy Un

W(X) =

u(1n -1) u(zn -1) ugn -1)

For any n functions, W(x) = 0if some oneu; islinearly dependent on
the others, asu, = kyu; + kou, + - - - + k, _,u,_ ; with the coefficients
k; constant. And for n solutions of alinear differential equation of the
nth order, if W(x) # 0, the solutions are linearly independent.

Constant Coefficients To solve the homogeneous equation of the
nth order A, dny/dx™ + A,_ ,d"~ly/dx"—1 + - - - + Ajdy/dx + Agy = 0,
A, # 0, where A, A,_1, . . . , Ay are constants, find the roots of the
auxiliary equation

AP+ AP A AP A =0

For each simplereal root r, thereisaterm ce’in the solution. Theterms
of the solution are to be added together. When r occurs twice among the
n roots of the auxiliary equation, the corresponding term is e%(c; +
c,x). When r occurs three times, the corresponding term is €*(c, +
C,X + c3x3), and so forth. When there is a pair of conjugate complex
roots a + bi and a — bi, the real form of the terms in the solution is
€¥(c, cos bx + d; sin bx). When the same pair occurs twice, the cor-
responding term is e[(c; + ¢,x) cosbx + (d; + d,x) sin bx], and so
forth.

Consider next the general nonhomogeneous linear differential equa-
tion of order n, with constant coefficients, or

Adry/dxn + A, _d—ly/dxn—t 4 - - - + A, dy/dx + Agy = E(X)

We may solve this by adding any particular integral to the comple-
mentary function, or general solution, of the homogeneous equation
obtained by replacing E(x) by zero. The complementary function may
be found from the rules just given. And the particular integral may be
found by the methods of the following paragraphs.

Undetermined Coefficients In the last equation, let the right mem-
ber E(x) be asum of terms each of which isof thetypek, k cosbx, k sin
bx, ke®, kx, or more generally, kxme?*, kxme2* cos bx, or kxme2 sin bx.
Here mis zero or a positive integer, and a and b are any real numbers.
Then the form of the particular integral | may be predicted by the
following rules.

Case 1. E(x)isasingleterm T. Let D be written for d/dx, so that the
given equation is P(D)y = E(x), where P(D) = A.D" + A,_,D"~1 +
-+ -+ AD + Agy. With the term T associate the simplest polynomial
Q(D) such that Q(D)T = 0. For the particular typesk, etc., Q(D) will be
D, D2 + b2 D2 + b2 D — a, D2 and for the genera types kxme>, etc.,
QD) will be (D — am*i (D2 — 2aD + a2 + b3+l
(D2 — 2aD + a? + b?)m+1 Thus Q(D) will always be some power
of afirst- or second-degree factor, QD) = FV, F =D — a, or F =
D2 — 2aD + a2 + b2

Use the method described under Constant Coefficientsto find theterms
in the solution of P(D)y = 0 and aso the terms in the solution of
Q(D)P(D)y = 0. Then assume the particular integral | isalinear combi-
nation with unknown coefficients of those terms in the solution of
Q(D)P(D)y = 0 which are not in the solution of P(D)y = 0. Thus
if Q(D) = Faand F is not a factor of P(D), assume | = (Ax9-1 +
Bxd=2 + - - - + L)e*when F = D — a, and assume | = (Ax9-1 +
Bx9-2 + - - - 4+ L)e* cos bx + (Mxd9=1 + Nx9=2 + - .- + R)eX
sin bx when F = D2 — 2aD + a2 + b2 When F is a factor of P(D)
and the highest power of F which is a divisor of P(D) is Fk, try the
| above multiplied by x.

Case 2. E(x) isa sum of terms. With each term in E(X), associate a
polynomial Q(D) = F4 as before. Arrange in one group al the terms
that have the same F. The particular integral of the given equation will
be the sum of solutions of equations each of which has one group on the
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right. For any one such equation, the form of the particular integral is
given as for Case 1, with q the highest power of F associated with any
term of the group on theright.

After the form has been found in Case 1 or 2, the unknown coeffi-
cientsfollow when we substitute back in the given differential equation,
equate coefficients of like terms, and solve the resulting system of si-
multaneous equations.

Variation of Parameters. Whenever afundamental system of solu-
tionsuy, U,, . . ., U, for the homogeneous equation is known, a par-
ticular integral of

A (X)dry/dxn + A, (x)dn—y/dxn—1 + - - -

+ A(x) dyldx + Ay(X)y = E(x)
may be found in the formy = Zvu,. In this and the next few summa-
tions, k runs from 1 to n. The v, are functions of x, found by integrat-
ing their derivatives v, and these derivatives are the solutions of
the n simultaneous equations 2viu, = 0, 2wy, = 0, 2w, = O, - -,
Sviur—2 = 0, A,()Zvun—Y = E(x). To find the v, from v, =
Jvi dx + ¢, any choice of constants will lead to a particular integral.

The special choice v, = f Vi dx leads to the particular integral having

0
v, Y.y’ ...,y each equa to zero when x = 0.
The Cauchy-Euler Equidimensional Equation This has the form
koxndny/dx" + ki, _x"~idn—y/dxn -t + -
+ kyx dy/dx + koy = F(x)
The substitution x = €, which makes
x dy/dx = dy/dt
xk dky/dxk = (d/dt — k + 1) - - - (d/dt — 2)(d/dt — 1) dy/dt
transforms this into a linear differential equation with constant coeffi-
cients. Its solution y = g(t) leadsto y = g(In x) as the solution of the
given Cauchy-Euler equation.
Bessel's Equation The general Bessel equation of order nis:
Xy +xy + (x2-n9y=0
This equation has general solution
y = AJ(X) + BI_,(X)

when n is not an integer. Here, J(x) and J_,(X) are Bessel functions
(see section on Special Functions).
In case n = 0, Bessel’s equation has solution

) o (DR
y=AJ(x) +B [Jo(x) In(x) k§=:1 224k!)2 :l

where H, is the kth partial sum of the harmonic series, 1 + ¥2 + ¥ +
<-4+ 1k
Incase n = 1, the solution is

y=AJ(X) + B {Jl(x) In(x) + Ux
_ [ i (= D*H + Hk—l)X2k71:| }
22kl(k — 1)!

k=1

Incasen > 1, nisan integer, solution is

S (7 1)k+1(n — l)!XZkfn
y=AJ(X) + B {Jn(x) In(x) + [kgo 22T a(L — ) ]

N I: i (= Dk 3(H, + Hk+1)X2k+n:| }

= 22 kI (k + n)!

Solutions to Bessel’s equation may be given in several other forms,
often exploiting the relation between H, and In (k) or the so-called Euler
constant.

General Method of Power Series Given a genera differential
equation F(x, y, ¥, . . .) = 0, the solution may be expanded as a
Maclaurin series, soy = 2z_, a,x", where a, = f™(0)/n!. The power
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seriesfory may bedifferentiated formally, sothaty’ = 27_, na,x"~1 =
2ioo(n+ Da,  x" andy” = Zp_,n(n — Dax"2=327_o(n+ 1)
(n+ 2)a,, X"

Substituting these seriesinto the equation F(X, y, y’, . . .) = Ooften
gives useful recursive relationships, giving the value of a, in terms of
previous values. If approximate solutions are useful, then it may be
sufficient to take the first few terms of the Maclaurin series asasolution
to the equation.

ExAMPLE. Consider y’ — y' + xy = 0. The procedure gives Z;_, (n + 1)
(N + 2a. X" = 27 (N + Dan X" + X Zig ax” = 27 (n + 1)
(N+ 2@, oX" = Z5_o (N + Dan X"+ 275 8,1 X" = (28, —a)x® + 27,
[(n+DY(n+2a,,, — (n+ Da,,, + a,_,)] x" = 0. Thus2a, — a, = Oand, for
n>0 (n+ Y(n + a,., — (n + a,,; + a,_, = 0. Thus, ap and g,
may be determined arbitrarily, but thereafter, the values of a, are determined re-
cursively.

PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations (PDES) arise when there are two or more
independent variables. Two notations are common for the partial deriv-
ativesinvolved in PDEs, the‘‘del’’ or fraction notation, where the first
partial derivative of f with respect to x would be written of/9x, and the
subscript notation, where it would be written f,.

In the same way that ordinary differential equations often in-
volvearbitrary constants, solutionsto PDEsofteninvolvearbitrary func-
tions.

EXAMPLE. f,, = O has as its general solution g(x) + h(y). The function g
does not depend on'y, so g, = 0. Similarly, f, = 0.

PDEs usually involve boundary or initial conditions dictated by the
application. These are analogous to initial conditionsin ordinary differ-
ential equations.

In solving PDEs, it is seldom feasible to find a genera solution and
then specialize that general solution to satisfy the boundary conditions,
as is done with ordinary differential equations. Instead, the boundary
conditions usually play a key role in the solution of a problem. A no-
table exception to this is the case of linear, homogeneous PDEs since
they have the property that if f, and f, are solutions, then f, + f, isaso
asolution. The wave equation is one such equation, and this property is
the key to the solution described in the section ** Fourier Series.”’

Often it is difficult to find exact solutions to PDES, so it is necessary
to resort to approximations or numerical solutions.

Classification of PDEs

Linear A PDEslinear if it involves only first derivatives, and then
only to the first power. The general form of alinear PDE, in two inde-
pendent variables, x and y, and the dependent variable z, is P(x, y, 2)
fe + QX ¥, 2f, = R(X, y, 2, and it will have a solution of the
formz = f(x, y) if itssolution isafunction, or F(X, y, 2) = 0if the solu-
tion is not a function.

Elliptic Laplace's equation f,, + f,, = 0 and Poisson’s equation
fo + f,y = 9(x, y) are the prototypical elliptic equations. They have
analogs in more than two variables. They do not explicitly involve the
variable time and generally describe steady-state or equilibrium condi-
tions, gravitational potential, where boundary conditions are distribu-
tions of mass, electrical potential, where boundary conditions are elec-
trical charges, or equilibrium temperatures, and where boundary
conditions are points where the temperature is held constant.

Parabolic T, = T, + T,, represents the dynamic condition of diffu-
sion or heat conduction, where T(X, y, t) usually represents the tempera-
ture at time t at the point (X, y). Note that when the system reaches
steady state, the temperature is no longer changing, so T, = 0O, and this
becomes Laplace's equation.

Hyperbolic Wave propagation is described by equations of the type
Uy = C%(u, + Uy), where c is the velocity of waves in the medium.

VECTOR CALCULUS

Vector Fields A vector field is a function that assigns a vector to
each point in aregion. If the region istwo-dimensional, then the vectors
assigned are two-dimensional, and the vector field is atwo-dimensional
vector field, denoted F(x, y). In the same way, a three-dimensional
vector field is denoted F(x, v, 2).

A three-dimensional vector field can always be written:

F(xy, 2 = fi(x ¥, 2i + f(x ¥, 2 + f5(x, Y, 2k

where i, j, and k are the basis vectors (1, 0, 0), (0, 1, 0), and (0, O, 1),
respectively. The functions f;, f,, and f; are called coordinate functions
of F.

Parameterized Curves |f Cisacurve from apoint A to a point B,
either in two dimensions or in three dimensions, then a parameterization
of Cisavector-valued function r(t) = ry(t)i + ry(t)j + ra(t)k, which
satisfiesr(a) = A, r(b) = B,and r(t) isonthecurveC,fora=t=bh. It
is also necessary that the function r(t) be continuous and one-to-one. A
given curve C has many different parameterizations.

The derivative of a parameterization r(t) is a vector-valued function
r'(t) = ri®)i + ryt)j + ri(t)k. The derivativeisthe velocity function of
the parameterization. It is always tangent to the curve C, and the magni-
tude is the speed of the parameterization.

Line Integrals If F is a vector field, C is a curve, and r(t) is a
parameterization of C, then thelineintegral, or work integral, of F along
Cis

W:J F-dr :be(r(t))-r’(t)m
C a

This is sometimes called the work integral because if F is a force
field, then W is the amount of work necessary to move an object along
the curve C from A to B.

Divergence and Curl The divergence of a vector field F isdiv F =
fix + fpy + 5, If F represents the flow of afluid, then the divergence
a a point represents the rate at which the fluid is expanding at that
point. Vector fields with div F = 0 are called incompressible.

The curl of Fis

curl F = (fy — f5)i + (fr, — f3.)] + (T — fip)K

If F isatwo-dimensional vector field, then the first two terms of the
curl are zero, so the curl is just

curl F = (fp — fipk

If F represents the flow of afluid, then the curl represents the rotation
of the fluid at a given point. Vector fields with curl F = 0 are called
irrotational.

Two important facts relate div, grad, and curl:

1. div(curl F) =0

2. curl (gradf) =0

Conservative Vector Fields A vector field F = fji + f,] + f3k is
conservative if al of the following are satisfied:

fay = fox fi = fa and for = T3

If F is a two-dimensiona vector field, then the second and third
conditions are always satisfied, and so only the first condition must
be checked. Conservative vector fields have three important proper-
ties:

1. f F - dr hasthe same value regardless of what curve Cis chosen

C
that connects the points A and B. This property is called path indepen-
dence.
2. Fisthe gradient of some function f(x, y, 2).
3. Cul F=0.
In the special case that F is a conservative vector field, if F = grad
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(f), then

JF-dr:f(B)ff(A)
C

THEOREMS ABOUT LINE AND
SURFACE INTEGRALS

Two important theorems relate line integrals with double integrals. If R
isaregioninthe planeand if Cisthe curvetracing the boundary of Rin
the positive (counterclockwise) direction, and if F is a continuous vec-
tor field with continuous first partial derivatives, line integralson C are
related to double integrals on R by Green's theorem and the divergence

theorem.
j F~dr:ff curl (F) - dS
C R

Green’s Theorem
The right-hand double integral may also be written as j J |curl (F)|
R

dA.

Green's theorem describes the total rotation of a vector field in two
different ways, on theleft in terms of the boundary of the region and on
the right in terms of the rotation at each point within the region.

Divergence Theorem

LF-dN =”Rdiv(F)dA

where N is the so-called normal vector field to the curve C. The diver-
gence theorem describes the expansion of aregion in two distinct ways,
on the left in terms of the flux across the boundary of the region and on
the right in terms of the expansion at each point within the region.

Both Green’s theorem and the divergence theorem have correspond-
ing theorems involving surface integrals and volume integrals in three
dimensions.

LAPLACE AND FOURIER TRANSFORMS

Laplace Transforms The Laplace transform is used to convert
equations involving a time variable t into equations involving a fre-

Table 2.1.4 Laplace Transforms

f(t) F(9) = L(f(1)

Name of function

1 a als
2.1 Vs
0 t<ae s . .
3. Uy(t) { 1 t>a Heavyside or step function
4. 5,(t) = uy(®) e Dirac or impulse function
5. et U(s—a)
6. (Ur)etr Urs+ 1)
7. ke & ki(s + a)
8. sinat al(s? + a?)
9. cosat sl/(s? + a?
10. et sin bt b/[(s + a)2 + b3
n et et 1
"at+b a+b (s—a)(s—b)
12. t Us?
13. t2 2/s3
14. tn n!/sh*+1
15. t2 I'a+ /2t Gamma function (see ‘* Special
Functions'")
16. sinh at al(s? — a?)
17. cosh at sl/(s?2 — a?
18. tnet nl/(s — a)"*t
19. tcos at (s? — ad)/(s? + a?)?
20. tsinat 2as/(s? + a?)?
21, sinat — atcosat  2a%(s? + a?)?
22. arctan als (sinat)/t
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Table 2.1.5 Properties of Laplace Transforms

f(t) F(s) = L(f(t) Name of rule
1 f(t) ) e sf(t) dt Definition
2. 1(1) + 9(t) F(9 + G(9) Addition
3. kf(t) kF(s) Scalar multiples
4. f'(t) sF(s) — f(01) Derivative laws
5. (1) s?F(s) — sf(0*)
—f (O*)
6. f'(t) s3F(s) — s?f(0%)
— sf’(0%) — £”(0%)
7. f f(t)dt (Ws)F(s) Integral law
+ (1) f f(t) dtlo-
8. f(bt) (1/b)F(s/b) Change of scale
9. ef(t) F(s—a) First shifting
10. f = g(t) F(9)G(9) Convolution
11. u(t)f(t — a) F(s)e & Second shifting
12. —tf(t) F'(s) Derivativein s

quency variable s. There are essentialy three reasons for doing this:
(2) higher-order differential equations may be converted to purely alge-
braic equations, which are more easily solved; (2) boundary conditions
are easily handled; and (3) the method is well-suited to the theory asso-
ciated with the Nyquist stability criteria.

In Laplace-transformation mathematics the following symbols and
equations are used [Tables Z.TZ4land 2.1.5):

f(t) = afunction of time
s = acomplex variable of the form (o + jw)
F(s) = an equation expressed in the transform variable s, resulting
from operating on afunction of time with the Laplaceintegral
& = an operational symbol indicating that the quantity which it
prefixes is to be transformed into the frequency domain
f(0*) = the limit from the positive direction of f(t) as t approaches
zero
f(0~) = the limit from the negative direction of f(t) ast approaches
zero

Therefore, F(s) = <[ f(t)]. The Laplace integral is defined as
£ = j e~ dt. Therefore, L[ f(t)] = f e~ sf(t) dt
0 0

Direct Transforms

EXAMPLE.
ft) = sin Bt
LHD] = L(sin BY) = j“snme s dt
0
Bt — @—ipt
but s‘n/;t:e'z—je where j2=—1

% (sin BY) = 2—l]f (P — e-iye gt
1 - X
=— | —— ) et-stipt
2j (S - JB)

1 (;1
2] \s+jB
B

2+ p?

0

el=s—ipt

o

lists the transforms of common time-variable expressions.
Some special functions are frequently encountered when using La-
place methods.
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The Heavyside, or step, function U,(t) sometimes written u(t — a), is
zeroforadlt <aand1foralt>a ltsvaueat = ais defined
differently in different applications, as O, %2, or 1, or it is simply left
undefined. In Laplace applications, the value of a function at a single
point does not matter. The Heavyside function describes a force which
is‘*off’’ until timet = a and then instantly goes ‘‘on.”

The Dirac delta function, or impulse function, 5,(t), sometimes written
8(t — a), isthe derivative of the Heavyside function. Itsvalueisaways
zero, except at t = a, where itsvalue is ** positive infinity.”” It is some-
times described as a ‘‘point mass function.”” The delta function de-
scribes an impulse or an instantaneous transfer of momentum.

The derivative of the Dirac deltafunctionis called the dipole function.
It is less frequently encountered.

The convolution f * g(t) of two functions f(t) and g(t) is defined as

fxg(t) = Ltf(u)g(t —u)du

Laplace transforms are often used to solve differential equations aris-
ing from so-called linear systems. Many vibrating systems and electri-
cal circuits are linear systems. If an input function fi(t) describes the
forces exerted upon a system and a response or output function f(t)
describes the motion of the system, then the transfer function T(s) =
Fo()/Fi(s). Linear systems have the specia property that the transfer
function isindependent of the input function, within the elastic limits of
the system. Therefore,

Fo9 _ Go9)
Fi(s) - Gi(s)

This gives a technique for describing the response of a system to a
complicated input function if its response to a simple input function is
known.

ExAMPLE. Solvey” + 2y’ — 3y = 8¢ subject to initial conditionsy(0) = 2
andy'(0) = 0. Lety = f(t) and Y = F(s). Take Laplace transforms of both sides
and substitute for y(0) and y'(0), and get

8
SPY — 25+ 2(sY —2) —3Y = ——
( ) p—

Solve for Y, apply partia fractions, and get

282+ 2s+4
T (s+3)(s— 12
1 s+ 1
Ts+3 (s-17
I S S
(s+3 (s—1) (s—172

Using the tables of transforms to find what function has Y as its transform, we get
y=e3+¢+ 2t¢
EXAMPLE. A vibrating system responds to an input function f(t) = sint with
aresponse f,(t) = sin 2t. Find the system response to the input g;(t) = sin 2t.
Apply the invariance of the transfer function, and get
F.G
G — o™~
o(S) =

A2+ 1)

_ 2 12 16
s2+22 16 | (s?+ 292

Applying formulas 8 and 21 fromTable 2T Zlof Laplace transforms,
Oo(t) = 2sin2t — ¥4sin 2t + %2t cos 2t

Inversion When an equation has been transformed, an explicit solu-
tion for the unknown may be directly determined through algebraic
manipulation. In automatic-control design, the equation is usually the

differential equation describing the system, and the unknown is either
the output quantity or the error. The solution gained from the trans-
formed equation is expressed in terms of the complex variable s. For
many design or analysis purposes, the solution in sis sufficient, but in
some cases it is necessary to retransform the solution in terms of time.
The process of passing from the complex-variable (frequency domain)
expression to that of time (time domain) is called an inver se transfor ma-
tion. It is represented symbolically as

L1F(s) = f(t)

For any f(t) thereis only one direct transform, F(s). For any given F(s)
there is only one inverse transform f(t). Therefore, tables are generaly
used for determining inverse transforms. Very complete tables of in-
verse transforms may be found in Gardner and Barnes, ‘‘ Transients in
Linear Systems.”” As an example of the inverse procedure consider an
equation of the form

K= ax(t)+f%t)dt

It is desired to obtain an expression for x(t) resulting from an instanta-
neous change in the quantity K. Transforming the last equation yields

K_ X9, 7109
27X(S)a+ B + S
If f-10)s =0
then X(S) = %
B o K/a
X = LXE) = & Vo

K
FromIabeZTZ x(t) = — e Veh
o

Fourier Coefficients Fourier coefficients are used to analyze peri-
odic functions in terms of sines and cosines. If f(x) is a function with
period 2L, then the Fourier coefficients are defined as

1 L
an:—f f(s)cosnisds n=012 ...
L) . L

1(t . nms
bn:EﬁLf(s)sdes n=12 ...

Then the Fourier theorem states that

Qy i nmX . nmX
f(x) = —+ a, cos (—) + b, sin (—)
2 n§::1 L L

The series on the right is called the ** Fourier series of the function
f(x)."”” The convergence of the Fourier seriesis usually rapid, so that the
function f(x) is usualy well-approximated by the sum of the first few

sums of the series.
Examples of the Fourier Series If y = f(x) is the curve in(Figs]

217110 to 2.1.112, then in[EgZ1.110]

_h 4n Coswx+1cos37rx+1COSS7TX+“_)
YT c 9% T

Fig. 2.1.110 Saw-tooth curve.
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In[EQZTI1T]
_4_h nlx_;,_i nﬂ+lsi %J,.)
Y= 39" ¢ s

-2ci -ai Olp ¢ 12¢ 13¢
- C— =
Fig. 2.1.111 Step-function curve.
In[E0ZTT117]
_2h m 1 2mx 1o 3mx )
- 2 3

Fig. 2.1.112 Linear-sweep curve.

If the Fourier coefficients of a function f(x) are known, then the
coefficients of the derivative f’(x) can be found, when they exist, as
follows:

a;=nb, b= —na,
where &/, and by, are the Fourier coefficients of f'(x).
The complex Fourier coefficients are defined by:

Ch = 1’/z(an - Ibn)
Co = YA,
¢, = Y2(a, + ib,)

Then the complex form of the Fourier theorem is

fx)= > cemmt

n=—o

Wave Equation Fourier series are often used in the solution of the
wave equation au,, = u; where0 < x <L, t> 0, and initial conditions
are u(x, 0) = f(x) and u,(x, 0) = g(x). This describes the position of a
vibrating string of length L, fixed at both ends, with initia position f(x)
and initial velocity g(x). The constant a is the velocity at which waves
are propagated along the string, and isgiven by a2 = T/p, where T isthe
tension in the string and p is the mass per unit length of the string.

If f(x) is extended to the interval — L < x < L by setting f(—x) =
—f(x), then f may be considered periodic of period 2L. Its Fourier
coefficients are

L nmx
a,=0 bn=f f(x)sjn%wdx n=12 ...
—-L
The solution to the wave equation is
= L nrt
t) = n—-cos—
u(x, t) nglbns 3 cos 3

Fourier transform A nonperiodic function f(x) requires two func-
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tions to describe its Fourier transform:

AW) = r £(x) cos wx dx

B(w) = Jx f(x) sin wx dx

Then the Fourier integral equation is
f(x) = f: A(W) coswx + B(w) sin wx dw
The complex Fourier transform of f(x) is defined as
F(w) = r F(x) @
Then the complex Fourier integral equation is
f(x) = %T J: F(w)e=wx dw

Heat Equation The Fourier transform may be used to solve the
one-dimensional heat equation u(x, t) = u,(X, t), fort > 0, giveninitial
condition u(x, 0) = f(x). Let F(s) be the complex Fourier transform of
f(x), and let U(s, t) be the complex Fourier transform of u(x, t). Then
the transform of u,(x, t) is dU(s, t)/dt.

Transforming u(X, t) = ug(s,t) yields dU/dt + s2U = 0 and
U(s, 0) = f(s). Solving this using the Laplace transform gives U(s, t) =
F(s)est.

Applying the complex Fourier integral equation, which gives u(x, t)
in terms of U(s, t), gives

u(x t) = %Tf U(s, t)e is<ds
0

1 (= (= !
= —f f f(y)gsy—xes ds dy
27 ) . Jo

Applying the Euler formula, €% = cosx + i sin x,

e f f " 1(y) cos (s(y — et ds dy

SPECIAL FUNCTIONS

Gamma Function The gamma function is a generdlization of the
factorial function. It arises in Laplace transforms of polynomidls, in
continuous probability, and in the solution to certain differential equa-
tions. It is defined by the improper integral:

T(x) = f tx-le-tdt
0

The integral converges for x > 0 and diverges otherwise. The func-
tion is extended to all negative values, except negative integers, by the
relation

I'(x + 1) = x['(x)
The gamma function is related to the factorial function by
I'n+21)=n!

for all positive integers n.
An important value of the gamma function is

r(05) = 2

Other values of the gamma function are found in CRC Standard
Mathematical Tables and similar tables.

Beta Function The beta function is a function of two variables and
is a generalization of the binomial coefficients. It is closely related to
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the gamma function. It is defined by the integral:
1
B(x,y) = f Y1 - ty-tat forx,y >0
0

The beta function can also be represented as a trigonometric integral,
by substituting t = sin? 6, as

2
B(x,y) = 2[ (sin 0)2¢~1 (cos 6)~1 do
0
The beta function is related to the gamma function by the relation
_ I(xrey)
9= Ty

This relation shows that B(x, y) = B(y, X).

Bernoulli Functions The Bernoulli functions are a sequence of peri-
odic functions of period 1 used in approximation theory. Note that for
any number x, [X] represents the largest integer less than or equal to x.
[3.14] = 3and [—1.2] = — 2. The Bernoulli functions B,(x) are de-
fined recursively as follows:

1 By(x) =1

2 B(X)=x—[{ %

3. B, is defined so that By, ,(x) =
periodic of period 1.

Bessel Functions of the First Kind Bessel functions of thefirst kind
arise in the solution of Bessel’s equation of order v:

B,(x) and so that B, is

Xy +xy + (x2—v)y=0

When this is solved using series methods, the recursive relations define
the Bessel functions of the first kind of order v:

o ( 1)k v+ 2k
L) = 2 KW+ K+ D) ( )

Chebyshev Polynomials The Chebyshev polynomials arise in the
solution of PDEs of the form

(1 =xy" —xy' +n?y=0
and in approximation theory. They are defined as follows:
To(x) =1 To(X) = 2x2 -1
T.(X) = x T4(x) = 4x3 — 3x

For n > 3, they are defined recursively by the relation
Tn+ l(x) - 2XTn(X) + Tnfl(x) =0
Chebyshev polynomials are said to be orthogonal because they have

the property
Jl LICOLMCO NN

- x forn# m

NUMERICAL METHODS

Introduction Classical numerical analysis is based on polynomial
approximation of the infinite operations of integration, differentiation,
and interpolation. The objective of such analyses is to replace difficult
or impossible exact computations with easier approximate computa-
tions. The challenge is to make the approximate computations short
enough and accurate enough to be useful.

Modern numerical analysis includes Fourier methods, including the
fast Fourier transform (FFT) and many problems involving the way
computers perform calculations. Modern aspects of the theory are
changing very rapidly.

Errors Actua value = calculated value + error. There are severa
sources of errorsin a calculation: mistakes, round-off errors, truncation
errors, and accumulation errors.

Round-off errors arise from the use of a number not sufficiently accu-
rate to represent the actual value of the number, for example, using
3.14159 to represent the irrational number 7, or using 0.56 to represent
%16 or 0.5625.

Truncation errors arise when a finite number of steps are used to
approximate an infinite number of steps, for example, the first n terms
of a series are used instead of the infinite series.

Accumulation errorsoccur when an error in one step is carried forward
into another step. For example, if X = 0.994 has been previously
rounded to 0.99, then 1 — x will be calculated as 0.01, while its true
value is 0.006. An error of less than 1 percent is accumulated into an
error of over 50 percent in just one step. Accumulation errors are partic-
ularly characteristic of methods involving recursion or iteration, where
the same step is performed many times, with the results of oneiteration
used as the input for the next.

Simultaneous Linear Equations The matrix equation Ax = b can
be solved directly by finding A=, or it can be solved iteratively, by the
method of iteration in total steps:

1. If necessary, rearrange therows of the equation so that thereareno
zeros on the diagonal of A.

2. Take asinitial approximations for the values of x;:

o_b o_b g b
1 2 n
g 8z 8
3. For successive approximations, take
XD = (b~ anx{ = = anx)iay

Repeat step 3 until successive approximations for the values of x;
reach the specified tolerance.

A property of iteration by total stepsisthat it is self-correcting: that
is, it can recover both from mistakes and from accumulation errors.

Zeros of Functions An iterative procedure for solving an equation
f(x) = 0 isthe Newton-Raphson method. The algorithm is as follows:

1. Choose afirst estimate of aroot X,.

2. Let X, q = % — F(x)/f'(%). Repeat step 2 until the estimate x,
converges to aroot r.

3. If there are other roots of f(x), then let g(x) = f(x)/(x — r) and
seek roots of g(x).

False Position I two valuesx, and x, are known, such that f(x,) and
f(x,) are opposite signs, then an iterative procedure for finding a root
between x, and x, is the method of false position.

L Letm=[f(x) — fOQ)/(x — Xo).

2. Letx, = x; — f(x)/m.

3. Find f(x,).

4. If f(x,) and f(x,) have the same sign, then let X, = x,. Otherwise,
let Xo = X,.

5. If x; is not a good enough estimate of the root, then return to
step 1.

Functional Equalities To solve an equation of theform f(x) = g(x),
use the methods above to find roots of the equation f(x) — g(x) = 0.

Maxima One method for finding the maximum of afunction f(x) on
an interval [a, b] isto find the roots of the derivative f'(x). The maxi-
mum of f(x) occurs at aroot or a an endpoint a or b.

Fibonacci Search An iterative procedure for searching for maxima
works if f(x) isunimodular on [a, b]. That is, f has only one maximum,
and no other local maxima, between a and b. This procedure takes
advantage of the so-called golden ratio, r = 0.618034 = (V5 — 1)/2,
which arises from the Fibonacci sequence.

1. If ais a sufficiently good estimate of the maximum, then stop.
Otherwise, proceed to step 2.

2. Letx; =ra+ (1 —r)b,andletx, = (1 —r)a+ rb. Notex; < X,.
Find f(x,) and f(x,).
a If f(x)) = f(x,), thenleta = x; and b = x,, and go to step 1.
b. If f(x)) < f(x,), thenlet a = x;, and go to step 1.
c. If f(xy) > f(xy), thenlet b = x,, and return to step 1.
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In cases b and ¢, computation is saved since the new value of one of
X, and X, will have been used in the previous step. It has been proved
that the Fibonacci search is the fastest possible of the general ** cutting’’
type of searches.

Steepest Ascent If z= f(X, y) isto be maximized, then the method
of steepest ascent takes advantage of the fact that the gradient, grad ()
always points in the direction that f is increasing the fastest.

1. Let (X, Yo) be aninitial guess of the maximum of f.

2. Let ebean initial step size, usually taken to be small.

3. Let (%1, Yk n) = (% Vi) + e grad f(x, yid/ |grad f(xc, yid |-

4. 1f f(Xer 1, Y1) IS NOt greater than f(x, y,), then replace e with
e/ 2 (cut the step size in half) and reperform step 3.

5. If (%, i) isasufficiently accurate estimate of the maximum, then
stop. Otherwise, repeat step 3.

Minimization The theory of minimization exactly paralels the
theory of maximization, since minimizing z = f(x) occurs at the same
value of x as maximizingw = — f(x).

Numerical Differentiation In general, numerical differentiation
should be avoided where possible, since differentiation tends to be very
sensitive to small errors in the value of the function f(x). There are
several approximationsto f’(x), involvinga‘‘step size'’ h usualy taken
to be small:

_fx+ h) — (%)

£/(x) .
f1(x) = W
Fr(x) = 1O 20 + T h) — Fx — ) — f(x — 2h)

6h

Other formulas are possible.

If aderivativeisto be calculated from an equally spaced sequence of
measured data, y;, Yo, - - . , Yn, then the above formulas may be
adapted by taking y; = f(x). Thenh = %, ; — X; isthe distance between
measurements.

Since there are usually noise or measurement errorsin measured data,
it is often necessary to smooth the data, expecting that errors will be
averaged out. Elementary smoothing is by simple averaging, where a
vauey; is replaced by an average before the derivative is calculated.
Examples include:

v YT YT Yia

' 3

YtV YTty
5

Yi

More information may be found in the literature under the topics
linear filters, digital signal processing, and smoothing techniques.

Numerical Integration

Numerical integration requires a great deal of calculation and isusually
done with the aid of a computer. All the methods described here, and
many others, are widely available in packaged computer software.
There is often a temptation to use whatever software is available with-
out first checking that it really is appropriate. For this reason, it is
important that the user be familiar with the methods being used and that
he or she ensure that the error terms are tolerably small.

Trapezoid Rule If aninterval a < x < bisdivided into subintervals
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, X, then the definite integral
b
J f(x) dx

a

Xo X1, - -

may be approximated by
n d — X
S [f(x) + 1)) 5=
i=1
If the values x; are equally spaced at distance h and if f; iswritten for
f(x), then the above formula reduces to

h
[fo+ 20+ 26+ + 264+ f] 5

The error in the trapezoid rule is given by
(b — a3t ()]
E|l=———F=
[Enl Ton?
wheretissomevaluea<t=<h.

Simpson’s Rule The most widely used rule for numerical inte-
gration approximates the curve with parabolas. Theinterval a<x<b
must be divided into n/2 subintervals, each of length 2h, where nisan
even number. Using the notation above, the integral is approximated by

h
[fo+ 41, + 26, + 4l + -+ 4fy s+ f] 3

The error term for Simpson’sruleis given by |E,,| < nh3|f®)(t) /180,
wherea<t<bh.
Simpson’s rule is generally more accurate than the trapezoid rule.

Ordinary Differential Equations

Modified Euler Method Consider afirst-order differential equation
dy/dx = f(x, y) and initia conditiony = y, and x = X,. Take x; equally
spaced, with X, ; — X, = h. Then the method is:

1 Setn=0.

2. yn = F(%, o) and Y = (X0, Yn) + Yoy (Xa, Yn), where f, and f,
denote partial derivatives.

3 Ynr1 = f(Xar 1 Yos D)

Predictor steps:

4. Forn>0,yf, 1 =Y,_1 + 2hy;.

5 Vi1 = f(Xas 1 Va4 0
Corrector steps:

6. yi+ 1=y, + [Yies +yrlhV2

7. ¥ifs = (X1, Vi)

8. If required accuracy is not yet obtained for y,,, ; and y;,, 1, then
substitute y* for y*, in al its forms, and repeat the corrector steps.
Otherwise, set n = n + 1 and return to step 2.

Other predictor-corrector methods are described in the literature.

Runge-Kutta Methods These make up a family of widely used
methods for ordinary differential equations. Given dy/dx = f(x,y)
and h = interva size, third-order method (error proportional to h4):

ko = hf(x,)

h ko
= + =y, + =
k, = hf (xn > Yn 2)

ky = hf(x, + h,y, + 2k; — Kp)
ko + 4k; + ks
6

Higher-order Runge-K utta methods are described in the literature. In
general, higher-order methods yield smaller error terms.

Yn+1 = Yn +
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COMPUTER PROGRAMMING

Machine Types

Computers are machines used for automatically processing information
represented by mechanical, electrical, or optical means. They may be
classified as analog or digital according to the techniques used to repre-
sent and process the information. Analog computers represent informa-
tion as physically measurable, continuous quantities and process the
information by components that have been interconnected to form an
analogous model of the problem to be solved. Digital computers, on the
other hand, represent information as discrete physical states which have
been encoded into symbolic formats, and process the information by
sequences of operational steps which have been preplanned to solve the
given problem.

When compared to analog computers, digital computers have the
advantages of greater versatility in solving scientific, engineering, and
commercial problems that involve numerical and nonnumerical infor-
mation; of an accuracy dictated by significant digits rather than that
which can be measured; and of exact reproducibility of results that stay
unvitiated by small, random fluctuations in the physical signals. In the
past, multiple-purpose analog computers offered advantages of speed
and cost in solving a sophisticated class of complex problems dealing
with networks of differential equations, but these advantages have dis-
appeared with the advances in solid-state computers. Other than the
occasional use of anal og techniques for embedding computations as part
of alarger system, digital techniques now account almost exclusively
for the technology used in computers.

Digital information may be represented as a series of incremental,
numerical steps which may be manipulated to position control devices
using stepping motors. Digital information may also be encoded into
symbolic formats representing digits, aphabetic characters, arithmetic
numbers, words, linguistic constructs, points, and pictures which may
be processed by avariety of mechanized operators. Machines organized
in this manner can handle a more general class of both numerical and
nonnumerical problems and so form by far the most common type of
digital machines. In fact, the term computer has become synonymous
with this type of machine.

Digital Machines

Digital machines consist of two kinds of circuits: memory cells, which
effectively act to delay signals until needed, and logica units, which
perform basic Boolean operations such as AND, OR, NOT, XOR,
NAND, and NOR. Memory circuits can be simply defined as units
where information can be stored and retrieved on demand. Configura-
tions assembled from the Boolean operators provide the macro opera-
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tors and functions available to the machine user through encoded in-
structions. A typical computer might house hundreds of thousands to
millions of transistors serving one or the other of these roles.

Both data and the instructions for processing the data can be stored in
memory. Each unit of memory has an address at which the contents can
be retrieved, or ‘‘read.”’” The read operation makes the contents at an
address available to other parts of the computer without destroying the
contents in memory. The contents at an address may be changed by a
write operation which inserts new information after first nullifying the
previous contents. Some types of memory, called read-only memory
(ROM), can be read from but not written to. They can only be changed at
the factory.

Abstractly, the address and the contents at the address serve roles
analogous to a variable and the value of the variable. For example, the
equation z = x + y specifies that the value of x added to the value of y
will produce the value of z In a similar way, the machine instruction
whose format might be:

add, address 1, address 2, address 3

will, when executed, add the contents at address 1 to the contents at
address 2 and store the result at address 3. Asin the equation where the
variables remain unaltered while the values of the variables may be
changed, the addresses in the instruction remain unaltered while the
contents at the address may change.

An essential property of a digital computer is that the sequence of
instructions processed to solve a problem is executed without human
intervention. When an operator manually controls the sequence of com-
putation, the machine is called a calculator. This distinction between
computer and calculator, however, is arbitrary and vague with modern
machines. Modern calculators offer opportunity to program a series of
operations which can be executed without any required intervention. On
the other hand, the computer is often programmed to interrogate the
operator for a response before continuing with the solution.

Computers differ from other kinds of mechanical and electrical ma-
chines in that computers perform work on information rather than on
forces and displacements. A common form of information is numbers.
Numbers can be encoded into a mechanized form and processed by the
four rules of arithmetic (+, —, X, +). But numbersare only onekind of
information that can be manipulated by the computer. Given an encoded
alphabet, words and languages can be formed and the computer can be
used to perform such processes as information storage and retrieval,
translation, and editing. Given an encoded representation of points and
lines, the computer can be used to perform such functions as drawing,
recognizing, editing, and displaying graphs, patterns, and pictures.

Because computers have become easily accessible, engineers and
scientists from every discipline have reformatted their professional ac-
tivities to mechanize those aspects which can supplant human thought
and decision. In this way, mechanical processes can be viewed as aug-
menting human physical skills and strength, and information processes
can be viewed as augmenting human mental skills and intelligence.

COMPUTER DATA STRUCTURES

Binary Notation

Digital computers represent information by strings of digits which as-
sume one of two values: 0 or 1. These units of information are called
bits, aword contracted from the term binary digits. A string of bits may
represent either numerical or nonnumerical information.

In order to achieve efficiency in handling the information, the com-
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puter groups the bits together into units containing a fixed number of
bits which can be referenced as discrete units. By encoding and format-
ting these units of information, the computer can act to process them.
Units of 8 bits, called bytes, are common. A byte can be used to encode
the basic symbolic characters which provide the computer with input-
output information such as the alphabet, decimal digits, punctuation
marks, and special characters.

Bit groups may be organized into larger units of 4 bytes (32 bits)
called words, or even larger units of 8 bytes called double words; and
sometimes into smaller units of 2 bytes called half words. Besides en-
coding numerical information and other linguistic constructs, these
units are used to encode a repertoire of machine instructions. Older
machines and special-purpose machines may have other word sizes.

Computers process numerical information represented as binary
numbers. The binary numbering system uses a positional notation simi-
lar to the decimal system. For example, the decimal number 596.37
representsthevalue5 X 102 + 9 X 101 + 6 X 109+ 3 X 10-1 + 7 X
10-2. The value assigned to any of the 10 possible digitsin the decimal
system depends on its position relative to the decimal point (aweight of
10 to zero or positive exponent is assigned to the digits appearing to the
left of the decimal point, and a weight of 10 to a negative exponent is
applied to digitsto theright of the decimal point). In asimilar manner, a
binary number uses a radix of 2 and two possible digits: 0 and 1. The
radix point in the positional notation separates the whole from the frac-
tional part of the number, just as in the decima system. The binary
number 1011.011 represents avalue 1 X 23 + 0 X 22 + 1 X 21 +
IX204+0X21+1X22+1X278

The operators available in the computer for setting up the solution of
aproblem are encoded into the instructions of the machine. Theinstruc-
tion repertoire always includes the usual arithmetic operators to handle
numerical calculations. These instructions operate on data encoded in
the binary system. However, this is not a serious operational problem,
since the user specifies the numbers in the decimal system or by mne-
monics, and the computer converts these formats into its own internal
binary representation.

On occasions when one must express a number directly in the binary
system, the number of digits needed to represent a numerical vaue
becomes a handicap. In these situations, a radix of 8 or 16 (called the
octal or hexadecimal system, respectively) constitutes amore convenient
system. Starting with the digit to the left or with the digit to the right of
theradix point, groups of 3 or 4 binary digits can be easily converted to
equivalent octal or hexadecimal digits, respectively. Appending non-
significant Os as needed to the rightmost and leftmost part of the num-
ber to complete the set of 3 or 4 binary digits may be necessary.[Tabld

[2Zllists the conversions of binary digits to their equivalent octal and

hexadecimal representations. In the hexadecimal system, the letters
A through F augment the set of decimal digits to represent the digits
for 10 through 15. The following examples illustrate the conversion
between binary numbers and octal or hexadecimal numbers using the
table.

binary number 011 011 110 101 . 001 111 100
octal number 3 3 6 5 . 1 7 4
binary number 0110 1111 0101 . 0011 1110
hexadecimal number 6 F 5 . 3 E

Formats for Numerical Data

Three different formats are used to represent numerical information
internal to the computer: fixed-point, encoded decimal, and floating-
point.

A word or half word in fixed-point format is given as a string of 0s
and 1s representing a binary number. The program infers the position of
the radix point (immediately to the right of the word representing in-
tegers, and immediately to the left of the word representing fractions).
Algebraic numbers have severa aternate forms: 1's complement, 2's
complement, and signed-magnitude. Most often 1's and 2's comple-
ment forms are adopted because they lead to a simplification in the
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Table 2.2.1 Binary-Hexadecimal
and Binary-Octal Conversion

Binary Hexadecimal Binary Octal
0000 0 000 0
0001 1 001 1
0010 2 010 2
0011 3 011 3
0100 4 100 4
0101 5 101 5
0110 6 110 6
0111 7 111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

hardware needed to perform the arithmetic operations. Thesignof al's
complement number can be changed by replacing the Os with 1s and the
1swith Os. To change the sign of a2's complement number, reverse the
digitsaswith a1’ s-complement number and then add a 1 to the resulting
binary number. Signed-magnitude numbers use the common represen-
tation of an explicit + or — sign by encoding the sign in the leftmost bit
asaO0 or 1, respectively.

Many computers provide an encoded-decimal representation as a
convenience for applications needing a decimal system.[Table 2.2.2]
gives three out of over 8000 possible schemes used to encode decimal
digitsin which 4 bitsrepresent each decade value. Many other codes are
possible using more bits per decade, but four bits per decimal digit are
common because two decimal digits can then be encoded in one byte.
The particular scheme selected depends on the properties needed by the
devices in the application.

The floating-point format is a mechanized version of the scientific
notation (= M X 10*E, where = M and = E represent the signed man-
tissa and signed exponent of the number). This format makes possible
the use of a machine word to encode a large range of numbers. The
signed mantissa and signed exponent occupy a portion of the word. The
exponent isimplied asapower of 2 or 16 rather than of 10, and theradix
point is implied to the left of the mantissa. After each operation, the
machine adjusts the exponent so that anonzero digit appearsin the most
significant digit of the mantissa. That is, the mantissa is normalized so
that its value lies in the range of 1/b =< M < 1 where b is the implied
base of the number system (e.g.: /2 = M < 1 for aradix of 2, and
116 = M < 1 for aradix of 16). Since the zero in this notation has
many logical representations, the format uses a standard recognizable
form for zero, with a zero mantissa and a zero exponent, in order to
avoid any ambiguity.

When calculations need greater precision, floating-point numbers use

Table 2.2.2 Schemes for Encoding
Decimal Digits

Decimal
digit BCD Excess-3 4221 code
0 0000 0011 0000
1 0001 0100 0001
2 0010 0101 0010
3 0011 0110 0011
4 0100 0111 0110
5 0101 1000 1001
6 0110 1001 1100
7 0111 1010 1101
8 1000 1011 1110
9 1001 1100 1111
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a two-word representation. The first word contains the exponent and
mantissa as in the one-word floating point. Precision is increased by
appending the extraword to the mantissa. The terms single precision and
double precision make the distinction between the one- and two-word
representations for floating-point numbers, although extended precision
would be a more accurate term for the two-word form since the added
word more than doubles the number of significant digits.

The equivalent decimal precision of a floating-point number depends
on the number n of bits used for the unsigned mantissa and on the
implied base b (binary, octal, or hexadecimal). This can be simply
expressed in equivalent decimal digits p as: 0.0301 (n — log,b) < p <
0.0301 n. For example, a 32-bit number using 7 bits for the signed
exponent of an implied base of 16, 1 bit for the sign of the mantissa, and
24 bits for the value of the mantissa gives a precision of 6.02 to 7.22
equivalent decimal digits. Thefractional partsindicate that some 7-digit
and some 8-digit numbers cannot be represented with a mantissa of 24
bits. On the other hand, a double-precision number formed by adding
another word of 32 bits to the 24-bit mantissa gives a precision of 15.65
to 16.85 equivaent decimal digits.

The range r of possible values in floating-point notation depends on
the number of bits used to represent the exponent and the implied radix.
For example, for asigned exponent of 7 bits and an implied base of 16,
then 16-84 < r < 1653,

Formats of Nonnumerical Data

Logica elements, also caled Boolean elements, have two possible
valueswhich simply represent O or 1, true or false, yes or no, OFF or ON,
etc. These values may be conveniently encoded by a single bit.

A large variety of codes are used to represent the alphabet, digits,
punctuation marks, and other special symbols. The most popular ones
are the 7-bit ASCII code and the 8-bit EBCDIC code. ASCII and
EBCDIC find their genesis in punch-tape and punch-card technologies,
respectively, where each character was encoded as a combination of
punched holes in a column. Both have now evolved into accepted stan-
dards represented by a combination of Os and 1sin a byte.

shows the ASCII code. (ASCII stands for American
Standard Code for Information Interchange.) The possible 128 bit pat-
terns divide the code into 96 graphic characters (although the codes
0100000 and 1111111 do not represent any printable graphic symbol)
and 32 control characters which represent nonprintable characters used
in communications, in controlling peripheral machines, or in expanding
the code set with other characters or fonts. The graphic codes and the
control codes are organized so that subsets of usable codes with fewer
bits can be formed and still maintain the pattern.

b, 0 0 0 0 1 1 1 1
Bits bs 0 0 1 1 0 0 1 1
bs 0 1 0 1 0 1 O 1
b, bs b, b
0 0 0 0 <NUL> <DLE> <s> 0 @ P p
0 0 O 1 <soH> <DCl> ! 1 A Q a q
0 0 1 0 <srx> <bC2> " 2 B R b r
0 0 1 1 <eTX> <DC3> # 3 C S ¢ S
0 1 0 0 <eor> <bDc4> $ 4 D T d t
0 1 0 1 <ENQ> <NAK> % 5 E U e u
0 1 1 0 <ACK> <SYN> & 6 F VvV f \
0 1 1 1 <BEL> <ETB> 7 G W g w
1 0 0 0 <BS> <CAN> ( 8 H X h X
1 0 0 1 <HT> <EM> ) 9 1 Y i y
1 0 1 0 <LF> <suB> * 0 J Z z
1 0 1 1 <vr> <ESC> + ;o K[k {
1 1 0 0 <FrF> <FS> , < L \ | |
1 1 0 1 <cr> <GS> - = M ] m }
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Fig. 2.2.1 ASCII code set.

Data Structure Types

The above types of numerical and nonnumerical dataformats are recog-
nized and manipulated by the hardware operations of the computer.
Other more complex data structures may be programmed into the com-
puter by building upon these primitive data types. The programmable
data structures might include arrays, defined as ordered lists of elements
of identical type; sets, defined as unordered lists of elements of identical
type; records, defined as ordered lists of elementsthat need not be of the
same type; files, defined as sequentia collections of identical records;
and databases, defined as organized collections of different records or
file types.

COMPUTER ORGANIZATION

Principal Components

The principal components of acomputer system shown schematically in
[Ebﬁonsist of acentral processing unit (referred to asthe CPU or
platform), its working memory, an operator’s console, file storage, and
a collection of add-ons and peripheral devices. A computer system can
be viewed as a library of collected data and packages of assembled
sequences of instructions that can be executed in the prescribed order by
the CPU to solve specific problems or perform utility functions for the
users. These sequences are variously called programs, subprograms,
routines, subroutines, procedures, functions, etc. Collectively they are
called software and are directly accessible to the CPU through the work-
ing memory. The file devices act analogously to a bookshelf —they
store information until it is needed. Only after a program and its data
have been transferred from the file devices or from peripheral devicesto
the working memory can the individual instructions and data be ad-
dressed and executed to perform their intended functions.

The CPU functions to monitor the flow of data and instructions into
and out of memory during program execution, control the order of
instruction execution, decode the operation, locate the operand(s)
needed, and perform the operation specified. Two characteristics of the
memory and storage components dictate the roles they play in the com-
puter system. They are access time, defined as the elapsed time between
theinstant aread or write operation has been initiated and the instant the

File devices

2%

(=/
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devices

NN
CPU %
/~
&
Operator’s
console
Memory

Fig. 2.2.2 Principal components of a computer system.
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operation is completed, and size, defined by the number of bytesin a
module. The faster the accesstime, the more costly per bit of memory or
storage, and the smaller the module. The principal types of memory and
storage components from the fastest to the slowest are registers which
operate as an integral part of the CPU, cache and main memory which
form the working memory, and mass and archival storage which serve
for storing files.

The interrelationships among the components in a computer system
and their primary performance parameters will be given in context in
the following discussion. However, hundreds of manufacturers of com-
puters and computer products have a stake in advancing the technology
and adding new functionality to maintain their competitive edge. In
such an environment, no performance figures stay current. With this
caveat, performance figures given should not be taken as absolutes but
only as an indication of how each component contributes to the per-
formance of the total system.

Throughout the discussion (and in the computer world generaly),
prefixes indicating large numbers are given by the symbols k for kilo
(103), M for mega (108), G for giga (10°), and T for tera (10%?). For
memory units, however, these symbols have aslightly altered meaning.
Memories are organized in binary units whereby powers of two form
the basis for all addressing schemes. According, k refers to a memory
size of 1024 (219) units. Similarly M refers to 10242 (1,048,576), G
refers to 10243, and T refers to 10244, For example, 1-Mbyte memory
indicates a size of 1,048,576 bytes.

Memory

The main memory, aso known as random access memory (RAM), is
organized into fixed size bit cells (words, bytes, half words, or double
words) which can be located by address and whose contents contain the
instructions and data currently being executed. Typically RAM modules
comein sizesof 1to 10 Mbytes. The CPU acts to address the individual
memory cells during program execution and transfers their contents to
and from its internal registers.

Optionally, the working memory may contain an auxiliary memory,
called cache, which is faster than the main memory. Cache operates on
the premise that data and instructions that will shortly be needed are
located near those currently being used. If the information is not found
inthe cache, then it istransferred from the main memory. Transfer rates
between the cache and main memory are very fast and are usually made
in block sizes of 16 to 64 bytes. Transfers between the cache and the
registers are usually made on a word basis. Typicaly, cache modules
comein sizes of afew kbytesto 1 Mbyte. The effective average access
times offered by the combined configuration of RAM and cache results
in amore powerful (faster) computer.

Central Processing Unit

The CPU makes available a repertoire of instructions which the user
uses to set up the problem solutions. Although the specific format for
instructions varies among machines, the following illustrates the pat-
tern:

name: operator, operand(s)

The name designates an address whose contents contain the operator
and one or more operands. The operator encodes an operation permitted
by the hardware of the CPU. The operand(s) refer to the entitiesused in
the operation which may be either data or another instruction specified
by address. Some instructions have implied operand(s) and use the bits
which would have been used for operand(s) to modify the operator.
To begin execution of aprogram, the CPU first loads the instructions
serially by address into the memory either from a peripheral device, or
more frequently, from storage. The internal structure of the CPU con-
tains a number of memory registers whose number, while relatively
few, depend on the machine's organization. The CPU acts to transfer
the instructions one at a time from memory into a designated register
where the individual bits can be interpreted and executed by the hard-
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ware. The actions of the following steps in the CPU, known as the
fetch-execute cycle, control the order of instruction execution.

Step 1: Manually or automatically under program control load the
address of the starting instruction into a register called the program
register (PR).

Step 2: Fetch and copy the contents at the address in PR into a
register called the program content register (PCR).

Step 3: Prepareto fetch the next instruction by augmenting PR to the
next address in normal sequence.

Step 4: Interpret the instruction in PCR, retrieve the operands, exe-
cute the encoded operation, and then return to step 2. Note that the
executed instruction may change the address in PR to start a different
instruction sequence.

The speed of machines can be compared by calculating the average
execution time of an instructiob_Tahle 22 3illustrates atypical instruc-
tion mix used in calculating the average. The instruction mix gives the
relative frequency each instruction appearsin a compiled list of typical
programs and so depends on the types of problems one expects the
machine to solve (eg., scientific, commercial, or combination). The
equation

t="3 wt,
i

expresses the average instruction execution time t as a function of the
execution time t; for instruction i having a relative frequency w; in the
instruction mix. The reciprocal of t measures the processor’s perfor-
mance as the average number of instructions per second (ips) it can
execute.

Table 2.2.3 Instruction Mix

i Instruction type Weight w;

1 Add: Floating point 0.07

2 Fixed point 0.16

3 Multiple: Floating point 0.06

4 Load/store register 0.12

5 Shift: One character 0.11

6 Branch: Conditional 0.21

7 Unconditional 0.17

8 Move 3 words in memory 0.10
Total 1.00

For machines designed to support scientific and engineering calcula-
tions, the floating-point arithmetic operations dominate the time needed
to execute an average instruction mix. The speed for such machinesis
given by the average number of floating-point operations which can be
executed per second (flops). This measure, however, can be misleading
in comparing different machine models. For example, when the ma-
chine has been configured with a cluster of processors cooperating
through a shared memory, the rate of the configuration (measured in
flops) represents the simple sum of the individua processors flops
rates. This does not reflect the amount of parallelism that can berealized
within a given problem.

To compare the performance of different machine models, users
often assemble and execute a suite of programs which characterize their
particular problem load. This idea has been refined so that in 1992 two
suites of benchmark programs representing typical scientific, mathe-
matical, and engineering applications were standardized: Specint92 for
integer operations, and Specfp92 for floating-point operations. Per-
formance ratings for midsized computers are often reported in units
calculated by a weighted average of the processing rates of these pro-
grams.

Computer performance depends on a number of interrelated factors
used in their design and fabrication, among them compactness, bus size,
clock frequency, instruction set size, and number of coprocessors.
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The speed that energy can be transmitted through a wire, bounded
theoretically at 3 X 10% cm/s, limits the ultimate speed at which the
electronic circuits can operate. The further apart the electronic elements
are from each other, the slower the operations. Advances in integrated
circuits have produced compact microprocessors operating in the nano-
second range.

The microprocessor’s bus size (the width of its data path, or the
number of bits that can be sent simultaneously in parallel) affect its
performance in two ways: by the number of memory cells that can be
directly addressed, and by the number of bits each memory reference
can fetch and process at a time. For example, a 16-bit microprocessor
can reference 216 16-bit memory cells and process 16 bits at atime. In
order to handle the individual bits, the number of transistors that must
be packed into the microprocessor goes up geometrically with the width
of the data path. The earliest microprocessors were 8-bit devices, mean-
ing that every memory reference retrieved 8 bits. To retrieve more bits,
say 16, 32, or 64 bits, the 8-bit microprocessor had to make multiple
references. Microprocessors have become more powerful asthe packing
technology has improved up to the 32-bit and 64-bit microprocessors
currently available.

While normally the circuits operate asynchronously, a computer
clock times the sequencing of the instructions. Clock speed is givenin
hertz (Hz, one cycle per second). Today’s clock cycles are in the mega-
hertz (MHz) range. Each instruction takes an integral number of cycles
to complete, with one cycle being the minimum. If an instruction com-
pletes its operations in the middle of a cycle, the start of the next in-
struction must wait for the beginning of the next cycle.

Two schemes are used to implement the computer instruction set in
the microprocessors. The more traditional complex instruction set com-
puter (CISC) microprocessors implement by hard-wiring some 300 in-
struction types. Strange to say, the faster alternate-approach reduced
instruction set computer (RISC) implements only about 10 to 30 percent
of the instruction types by hard wiring, and implements the remaining
more-complex instructions by programming them at the factory into
read-only memory. Since the fewer hard-wired instructions are more
frequently used and can operate faster in the simpler, more-compact
RISC environment, the average instruction time is reduced.

To achieve even greater effectiveness and speed calls for more com-
plex coordination in the execution of instructions and data. In one
scheme, several microprocessors in a cluster share a common memory
to form the machine organization (a multiprocessor or parallel proces-
sor). The total work which may come from a single program or inde-
pendent programs is parceled out to the individual machines which
operate independently but are coordinated to work in parallel with the
other machines in the cluster. Faster speeds can be achieved when the
individual processors can work on different parts of the problem or can
be assigned to those parts of the problem solution for which they have
been especialy designed (e.g., input-output operations or computa-
tional operations). Two other schemes, pipelining and array processing,
divide an ingtruction into the separate tasks that must be performed to
complete its execution. A pipelining machine executes the tasks con-
currently on consecutive pieces of data. An array processor executes the
tasks of the different instructions in a sequence simultaneously and
coordinates their completion (which might mean abandoning a partially
completed instruction if it had been initiated prematurely). These
schemes are usually associated with the larger and faster machines.

Operator’s Console

The system operator uses the console to initiate or terminate computing
tasks, to interrogate the computer to determine the status of the tasks
during execution, to give and receive instructions such as mounting a
particular file onto adrive or provide operating parameters during oper-
ations, and to otherwise monitor the system.

The operator’s console consists of arelatively slow-speed keyboard
input and a monitor display. The monitor display consists of a video
scope which might be simply two-tone or could have a selection of

colors or shades (up to 256) to build pictures and icons. Other important
scope characteristics are the size of the screen and the resolution mea-
sured in points on the screen called pixels. The total number of pixelsis
given by the number of pixels on a horizontal line and the number of
pixels on avertical line (e.g., 1024 X 768 or 1600 X 1200). The scope
has its own memory which refreshes and controls the display. For con-
venience and manual speed, a device called a mouse can be attached to
the console and rolled on a flat surface which in turn moves the cursor
onthedisplay. Thiscan be used to locate and select options displayed as
amenu on the screen. A mouse turned upside down so the ball can be
turned by the thumb performs the same function and is called a track-
ball.

File Devices

File devices serve to store libraries of directly accessible programs and
data in electronically or optically readable formats. The file devices
record the information in large blocks rather than by individua ad-
dresses. To be used, the blocks must first be transferred into the working
memory. Depending on how selected blocks are located, file devices are
categorized as sequential or direct-access. On sequential devices the
computer locates the information by searching the file from the begin-
ning. Direct-access devices, on the other hand, position the read-write
mechanism directly at the location of the needed information. Searching
on these devices works concurrently with the CPU and the other devices
making up the computer configuration.

Magnetic tapes using arbitrary block sizes form commercial sequen-
tial-access products. Besides the disadvantage that the medium must be
passed over sequentially to locate the beginning of the needed informa-
tion, magnetic tape recording does not permit information to be changed
in situ. Information can be changed only by reading the information
from one tape, making the changes, and writing the changed informa-
tion onto another tape.

Traditional magnetic tape recorders consist of reels of tape ¥z in
(12.7 mm) wide, 0.0015 in (0.0381 mm) thick, and 2400 ft (732 m)
long. Information is recorded across the tape in 9-bit frames. One bit in
each frame, called a parity bit, is used for checking purposes and is not
transferred into the memory of the computer. The remaining 8 bits
record the information using some standard format (e.g.: EBCDIC,
modified ASCII, or aninternal binary format). Lengthwise theinforma-
tion is recorded using standard densities such as 9600 bits/in, with gaps
between blocks sufficient in size to stop the tape transport at the end of a
block and before the beginning of the next block . Today’ stape unitsuse
¥2-in, 8-mm, or ¥s-in cartridges that have a capacity up to 2.5 Thytes of
uncompacted data or 7.2 Thytes of compacted data.

Magnetic or optical disks that offer awide choice of options form the
commercial direct-access devices. The recording surface consists of a
platter (or platters) of recording material mounted on acommon spindle
rotated at high speed. The read-write heads may be permanently posi-
tioned along the radius of the platter or may be mounted on a common
arm that can be moved radially to locate any specified track of informa-
tion. Information is recorded on the tracks circumferentially using
fixed-size blocks called pages or sectors. Pages divide the storage and
memory space alike into blocks of 4096 bytes so that program transfers
can be made without creating unusable space. Sectors nominally de-
scribe the physical division of the storage space into equa segmentsfor
easier positioning of the read-write heads.

The access time for retrieving information from a disk depends on
three separately quoted factors, called seek time, latency time, and
transfer time. Seek time gives the time needed to position the read-write
heads from their current track position to the track containing the infor-
mation. Average seek time is on the order of 100 ms. Since the faster
fixed-head disks require no radial motion, only latency and transfer time
need to be factored into the total access time for these devices. Latency
time is the time needed to locate the start of the information along the
circumferential track. This time depends on the speed of revolution of
the disk, and, on average, corresponds to the time required to revolve



Copyright (C) 1999 by The McGraw-Hill Companies, Inc. All rights reserved. Use of
this product is subject to the terms of its License Agreement. |Click here to view

the platter half a turn. The average latency time can be reduced by
repeating the information several times around the track. Average la-
tency timeison the order of 2to 20 ms. Transfer time, usually quoted as
arate, givestherate at which information can be transferred to memory
after it has been located. There is a large variation in transfer rates
depending on the disk system selected. Typical systems range from
20 kbytes/s to 20 Mbytes/s.

Disk devices are called soft or hard disks, referring to the rigidity of
the platter. Soft disks, also called floppy disks, have a mountable, small,
single platter that provides one or two recording surfaces. Soft or floppy
might be a misnomer since many systems use diskettes about the size
and rigidity of a credit card. Typical floppies have a physica size of
5%sin or 3%2in and have a capacity of 1.2 Mbytes and 1.44 Mbytes,
respectively. Hard disks refer to sealed devices whose physical size has
been reduced to units of 1.3t0 2.5 in (33 to 63.5 mm), yet their capacity
has increased. For example, disk storage of 200 Mbytesis available for
small computers, and for more complex systems an array of disks is
available having a capacity of from over 500 Mbytesto nearly 2 Ghytes.

Computer architects sometimes refer to file storage as mass storage or
archival storage, depending on whether or not the libraries can be kept
off-line from the system and mounted when needed. Disk drives with
mountable platter(s) and tape drives constitute the archival storage.
Sealed disks that often have fixed heads for faster access are the me-
dium of choice for mass storage.

Peripheral Devices and Add-ons

Peripheral devices function as self-contained external unitsthat work on
line to the computer to provide or receive information or to control the
flow of information. Add-ons are a special class of units whose circuits
can beintegrated into the circuitry of the computer hardware to augment
the basic functionality of the processors. Section 15 covers the elec-
tronic technology associated with these devices.

An input device may be defined as any device that provides a ma-
chine-readable source of information. For engineering work, the most
common forms of input are punched cards, punched tape, magnetic
tape, magnetic ink, touch-tone dials, mark sensing, bar codes, and key-
boards (usualy in conjunction with a printing mechanism or video
scope). Many bench instruments have been reconfigured to include dig-
ital devices to provide direct input to computers. Because of the data-
handling capabilities of the computer, these instruments can be simpler,
smaller, and less expensive than the hand instruments they replace. New
devices have also been introduced: devices for visual measurement of
distance, area, speed, and coordinate position of an object; or for in-
specting color or shades of gray for computer-guided vision. Other
methods of input that are finding greater acceptance include handwrit-
ing recognition, printed character recognition, voice digitizers, and pic-
ture digitizers.

Traditionally, output devices play the role of producing displays for
the interpretation of results. A large variety of printers, graphical plot-
ters, video displays, and audio sets have been developed for this pur-
pose. Printers are distinguished by:

Type of print head (letter-quality or dot-matrix)

Type of paper feed (tractor or friction)

Allowable paper sizes

Print control (character, line, or page at atime)

Speed (measured in characters, lines, or pages per minute)
Number of fonts (especially for laser printers)

Graphic plotters and video displays offer variations in size, color capa-
bilities, and quality. The more sophisticated video scopes offer dynamic
characteristics capable of animated displays.

A variety of actuators have been developed for driving control mech-
anisms. Typical developments are in high-precision rack-and-pinion
mechanisms and in lead screws that essentially eliminate backlash due
to gear trains. For complex numerical control, programmable con-
trollers (called PLCs) can simultaneously control and update data from
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multiple tasks. These electronically driven mechanisms and controllers,
working with input devices, make possible systems for automatic test-
ing of products, real-time control, and robotics with learning and
adaptive capabilities.

Computer Sizes

Compuiter size refers not only to the physical size but also to the number
of electronics elementsin the system, and so reflects the performance of
the system. Between the two ends of the spectrum from the largest and
fastest to the smallest and slowest are machines that vary in speed and
complexity. Although no nomenclature has been universally adopted
that indicates computer size, the following descriptions illustrate a few
generally understood terms used for some common configurations.

Per sonal computers (PCs) have been made possible by the advancesin
solid-state technology. The name applies to computers that can fit the
total complement of hardware on a desktop and operate as stand-alone
systems so as to provide immediate dedicated services to an individual
user. This popular computer size has been generally credited for spread-
ing computer literacy in today’s society. Because of its commercial
success, many peripheral devices, add-ons, and software products have
been (and are continually being) developed. Laptop PCs are personal
computers that have the low weight and size of a briefcase and can
easily be transported when peripherals are not immediately needed.

The term workstation describes computer systems which have been
designed to support complex engineering, scientific, or business appli-
cationsin aprofessional environment. Although atop-of-the-line PC or
a PC connected as a periphera to another computer can function like a
workstation, one can expect a machine designed as a workstation to
offer higher performance than a PC and to support the more specialized
peripherals and sophisticated professional software. Nevertheless, the
boundary between PCs and workstations changes as the technology
advanceq_Table ZZ 4] lists some published performance values for the
spectrum of computers which have been designated as workstations.
The spread in speed val ues represents the statistical average of reported
samples distributed over one standard deviation.

Notebook PCs and the smaller sized paimtop PCs are portable,
battery-operated machines. A typical notebook PC size would be
9 X 11in (230 X 280 mm) in area, 1 to 2 in (25 to 50 mm) thick, and
2t09Ib (1to 4 kg) inweight. They often have built-in programs stored
in ROM. Having 68-pin integrated circuit cards for mass memory that
can store as much as some hard disks, and being able to share programs
with desktop PCs, these machines find excellent use as portable PCsin
some applications and as data acquisition systems. However their un-
dersized keyboards and small scopes limit their usefulness for sustained
operations.

Table 2.2.4 Reported Performance Parameters
for Workstations

Workstation range

Low Mid High

Processor

Clock speed, MHz 20-33 40-80 100-200

Bussize 16-32 32 64

Number of coprocessors 1-2 1-2 1-4

Instruction set CIsC RISC
Speed rating

Specint92 17.1-25.1 32.3-55.7 38.1-77.1

Specfp92 21.2-264 43.9-81.9 52.0-120.0

Mips 20.6-36.4 21.9-92.1 86.6—135.4

Mflops 2.6-6.0 4.3-20.9 30.0-50.0
Memory capacity

Main, Mbytes 2-128 16-128

Cache, kbytes 8-128 64—-256
Disk capacity

Hard, Mbytes 10-80 80-200 200-400

Floppy, Mbytes 1.44 1.44
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Computers larger than a PC or aworkstation, called mainframes (and
sometimes minis or maxis, depending on size), serve to support mul-
tiusers and multiapplications. A remotely accessible computing center
may house several mainframes which either operate alone or cooperate
with each other. Their high speed and large memories alow them to
handle complex programs. A specific type of mainframe, used to main-
tain the database of a system, is called a database machine. Database
machines act in cooperation with a number of user stationsin a server-
client relationship. In this, the database machine (the server) provides
the dataand/or the programs and shares the processing with the individ-
ual workstations (the clients).

At the upper extreme end of the computer spectrum is the supercom-
puter, the class of the fastest machines that can address large, complex
scientific/engineering problems which cannot reasonably be transferred
to other machines. Obviously this class of computer must have cache
and main memory sizes and speeds commensurate with the speed of the
platform. While mass memory sizes must aso be large, computers
which support large databases may often have larger memories than do
supercomputers. Large, complex technical problems must be run with
high-precision arithmetic. Because of this, performance is measured in
double-precision flops. Supercomputer performance has moved from
the current range of 10 Gflops into the Tflops range. To realize these
speeds, the designers of supercomputers work at the edge of the avail-
able technology, especially in the use of multiple processors operating
in parallel. Current clusters of 4 to 16 processors are being expanded to
a goa of 100 and more. With multiple processors, however, perfor-
mance depends as much on the time spent in communication between
processors as on the computational speed of the individual processors.
In the final analysis, to muster the supercomputer’s inherent speed, the
development of the software becomes the problem. Some users report
that software must often be hand-tailored to the specific problem. The
power of the machines, however, can replace years of work in analysis
and experimentation.

DISTRIBUTED COMPUTING

Organization of Data Facilities

A distributed computer system can be defined as a collection of com-
puter resources which are remotely located from each other and are
interconnected to cooperate in providing their respective services. The
resources include both the equipment and the software. Resources dis-
tributed to reside near the vicinity where the data is collected or used
have an obvious advantage over centralization. But to provide informa-
tionin atimely and reliable manner, these islands of automation must be
integrated.

The size and complexity of an enterprise served by a distributed
information system can vary from a single-purpose office to amultiple-
plant conglomerate. An enterprise is defined as a system which has been
created to accomplish a mission in its environment and whose goals
involve risk. Internally it consists of organized functions and facilities
which have been prepared to provide its services and accomplish its
mission. When stimulated by an external entity, the enterprise acts to
produce its planned response. An enterprise must handle both the flow
of material (goods) and the flow of information. The information sys-
tem tracks the material inthe material system, but itself handlesonly the
enterprise’ s information.

The technology for distributing and integrating the total information
system comes under the industrial strategy known as computer-
integrated business (CIB) or computer-integrated manufacturing
(CIM). The following reasons have been cited for developing CIB and
CIM:

Most data generated locally has only local significance.

Data integrity resides where it is generated.

The quality and consistency of operational decisions demands not
only that all parts of the system work with the same data but that they
can receive it in areliable and timely manner.

If aloca processor fails, it may disrupt local operations, but the
remaining system should continue to function independently.

Small cohesive processors can be best managed and maintained lo-
caly.

Through standards, selection of local processes can be made from the
best products in a competitive market that can be integrated into the
total system.

Obsolete processors can be replaced by processors implemented by
more advance technology that conform to standards without the cost of
tailoring the products to the existing system.

[Figure 223 depicts the total information system of an enterprise. The
database consists of the organized collection of data the processors use
in their operations. Because of differences in their communication re-
quirements, the automated procedures are shown separated into those
used in the office and those used on the production floor. In a business
environment, the front office operations and back office operations
make this separation. While all processes have a critical deadline, the
production floor handles real-time operations, defined as processes
which must complete their response within acritical deadline or else the
results of the operations become moot. This places different constraints
on the local-area networks (LANS) that serve the communication needs
within the office or within the production floor. To communicate with
entities outside the enterprise, the enterprise uses a wide-area network
(WAN), normally made up from available public network facilities. For
efficient and effective operation, the processes must be interconnected
by the communications to share the datain the database and so integrate
the services provided.

WAN

Mail, phones
keyboards

Manual
operations

Database

Office
procedures

Shop
procedures

Commynicatio?®

Fig. 2.2.3 Composite view of an enterprise’s information system.

Communication Channels

A communication channel provides the connecting path for transmitting
signals between a computing system and aremotely located application.
Physically the channel may be formed by a wire line using copper,
coaxial cable, or optical-fiber cable; or may beformed by awirelessline
using radio, microwave, or communication satellites; or may be acom-
bination of these lines.

Capacity, defined as the maximum rate at which information can be
transmitted, characterizes a channel independent of the morphic line.
Theoretically, an ideal noiseless channel that does not distort the signals
has a channel capacity C given by:

C=2w

where C is in pulses per second and W is the channel bandwidth. For
digital transmission, the Hartley-Shannon theorem sets the capacity of a
channel limited by the presence of gaussian noise such as the thermal
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noise inherent in the components. The formula:
C = Wlog, (1 + SN)

givesthe capacity Cin bits/sintermsof thesignal to noiseratio /N and
the bandwidth W. Since the signal to noise ratio is normally given in
decibels divisible by 3 (e.g., 12, 18, 21, 24) the following formula
provides a workable approximation to the formula above:

C = W(SIN)y/3

where (SIN), is the signal-to-noise ratio expressed in decibels. Other
forms of noise, signal distortions, and the methods of signal modulation
reduce this theoretical capacity appreciably.

Nominal transmission speeds for electronic channels vary from 1000
bits to almost 20 Mbits per second. Fiber optics, however, form an
almost noise-free medium. The transmission speed in fiber optics de-
pends on the amount asignal spreads due to the multiple reflected paths
it takes from its source to its destination. Advances in fiber technology
have reduced this spread to give unbelievable rates. Effectively, the
speeds available in today’s optical channels make possible the trans-
mission over a common channel, using digital techniques, of all forms
of information: text, voice, and pictures.

Besides agreeing on speed, the transmitter and receiver must agree on
the mode of transmission and on the timing of the signals. For stations
located remotely from each other, transmission occurs by organizing the
bits into groups and transferring them, one bit after another, in a seria
mode. One scheme, called asynchronous or start-stop transmission, uses
separate start and stop signals to frame a small group of bits represent-
ing a character. Separate but identical clocks at the transmitter and
receiver time the signals. For transmission of larger blocks at faster
rates, the stations use synchronous transmission which embeds the clock
information within the transmitted bits.

Communication Layer Model

[E1gqure Z.Z]depicts two remotely located stations that must cooperate
through communication in accomplishing their respective tasks. The
communications substructure provides the communication services
needed by the application. The application tasks themselves, however,
are outside the scope of the communication substructure. The distinc-
tion hereis similar to that in a telephone system which is not concerned
with the application other than to provide the needed communication
service. The figure shows the communication facilities packaged into a
hierarchical modular layer architecture in which each node contains
identical kinds of functions at the same layer level. The layer functions
represent abstractions of real facilities, but need not represent specific
hardware or software. The entities at a layer provide communication
servicesto thelayer above or can request the services available from the
layer below. The services provided or requested are available only at
service points which are identified by addresses at the boundaries that
interface the adjacent layers.

The top and bottom levels of the layered structure are unique. The
topmost layer interfaces and provides the communication servicesto the
noncommunication functions performed at a node dealing with the ap-
plication task (the user's program). This layer also requests communi-
cation services from the layer below. The bottom layer does not have a
lower layer through which it can request communication services. This
layer acts to create and recognize the physical signals transmitted be-
tween the bottom entities of the communicating partners (it arrangesthe
actual transmission). The medium that provides the path for the transfer
of signals (a wire, usually) connects the service access points at the
bottom layers, but itself lies outside the layer structure.

Virtual communication occurs between peer entities, those at the
same level. Peer-to-peer communication must conform to layer proto-
col, defined as the rules and conventions used to exchange information.
Actua physical communication proceeds from the upper layers to the
bottom, through the communication medium (wire), and then up
through the layer structure of the cooperating node.
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Since the entities at each layer both transmit and receive data, the
protocol between peer layers controls both input and output data, de-
pending on the direction of transmission. The transmitting entities ac-
complish this by appending control information to each data unit that
they passto the layer below. Thiscontrol information islater interpreted
and removed by the peer entities receiving the data unit.

Communication Communication

user user
layer3 | ______ Layer 3
entities entities

Layer2 | ] Layer 2
entities Layer 2 protocol entities
Layer1 | o _____] Layer 1
entities entities

Layer 1 protocol

Communication medium

Fig. 2.2.4 Communication layer architecture.

Communication Standards

listsafew of the hundreds of forums seeking to develop and
adopt voluntary standards or to coordinate standards activities. Often
users establish standards by agreement that fixes some existing practice.
The 1SO, however, has described a seven-layer model, called the Refer-
ence Model for Open Systems Interconnection (OSl), for coordinating
and expediting the development of new implementation standards. The
term open systems refers to systems that allow devices to be intercon-
nected and to communicate with each other by conforming to common
implementation standards. The SO model is not of itself an implemen-
tation standard nor does it provide abasis for appraising existing imple-
mentations, but it partitions the communication facilities into layers of
related function which can be independently standardized by different
teams of experts. Its importance lies in the fact that both vendors and
users have agreed to provide and accept implementation standards that
conform to this model.

Table 2.2.5 Some Groups Involved with Communication
Standards

CCITT Comité Consultatif de Téégraphique et Téléphonique

1SO International Organization for Standardization

ANSI American National Standards Institute

EIA Electronic Industries Association

|IEEE Institute of Electrical and Electronics Engineers

MAP/TOP Manufacturing Automation Protocols and Technical and Office
Protocols Users Group

NIST National Institute of Standards and Technology

The following lists the names the ISO has given the layersin its ISO
model together with a brief description of their roles.

Application layer provides no services to the other layers but serves
as the interface for the specialized communication that may be reguired
by the actual application, such asfile transfer, message handling, virtual
terminal, or job transfer.

Presentation layer relieves the node from having to conform to a
particular syntactical representation of the data by converting the data
formats to those needed by the layer above.
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Session layer coordinates the dialogue between nodes including ar-
ranging several sessions to use the same transport layer at one time.

Transport layer establishes and releases the connections between
peers to provide for data transfer services such as throughput, transit
delays, connection setup delays, error rate control, and assessment of
resource availability.

Network layer provides for the establishment, maintenance, and re-
lease of the route whereby a node directs information toward its desti-
nation.

Data link layer is concerned with the transfer of information that has
been organized into larger blocks by creating and recognizing the block
boundaries.

Physical layer generates and detects the physical signals representing
the bits, and safeguards the integrity of the signals against faulty trans-
mission or lack of synchronization.

The | EEE has formulated several implementation standards for office
or production floor LANSs that conform to the lower two layers of the
1SO model. The functions assigned to the ISO datalink layer have been
distributed over two sublayers, alogical link control (LLC) upper sub-
layer that generates and interprets the link control commands, and a
medium access control (MAC) lower sublayer that frames the dataunits
and acquires the right to access the medium. From this structure, the
IEEE has formulated three standards for the MAC sublayer and SO
physical layer combination, and a common standard for the LLC sub-
layer. The three standards for the bottom portion of the structure are
named according to the method used to control the access to the me-
dium: carrier sense multiple access with collision detection (CSMA/
CD), token-passing bus access, and token ring access. A wide variety of
options have been included for each of these standards which may be
selected to tailor specific implementation standards.

CSMA/CD standardized the access method developed by the Xerox
Corporation under itstrademark Ethernet. The nodesin the network are
attached to a common bus, schematically shown in[Eig—225h. All
nodes hear every message transmitted, but accept only those messages
addressed to themselves. When a node has a message to transmit, it
listens for the line to be free of other traffic before it initiates transmis-
sion. However, more than one mode may detect the free line and may

PPQ QPP
OO0 OO0

(a) CSMA/CD (b) Token-passing
bus

(c) Token ring

Fig. 2.2.5 LAN structures.

start to transmit. In this situation the signals will collide and produce a
detectable change in the energy level present in the line. Even after a
station detects a collision it must continue to transmit to make sure that
al stations hear the collision (al data frames must be of sufficient
length to be present simultaneously on the line as they pass each sta-
tion). On hearing a collision, all stations that are transmitting wait a
random length of time and then attempt to retransmit.

The stations in the token-passing bus access method, like the CSMA/
CD method, share a common bus and communicate by broadcasting
their messages to al stations. Unlike CSMA/CD, token-passing bus
stations communicate in an ordered fashion as shown by the dashed line
in[F1g—_ZZ5b. By using specia control frames the stations organize
themselves into a logical ring by address (station 40 follows 30 which
follows 20 which follows 40). The token is a special control frame
which is circulated sequentially from station to station, giving the sta-
tion that has the token the exclusive right to transmit any message it has

ready for transmission. When a station has no message to transmit, or
after it has completed transmission, it passes the token to the next sta-
tion in the ring. The method features protocol procedures for restructur-
ing the ring when ring membership changes, such as when a station
intentionally or through failure leaves the ring, or a new station joins.

The token-ring access method connects the stations into a physical
ring as shown in A special mechanical connector attaches
the station equipment to the medium which when disconnected auto-
matically closes the line to reestablish line continuity. The token has a
priority level which may be changed by a station. When a station re-
ceives the token, it can start to circulate any datait has ready for trans-
mission at the priority level of the token. As each station receivesinfor-
mation from its neighbor, it regenerates the information and continues
to circulate it around the ring while retaining a copy of everything
destined for itself. The station that had originally sent the information
retains the token until the information has been returned uncorrupted.
Then it passesthe token to the next station. Any station that had changed
the priority level of the token has the responsibility for returning it to its
previous level in afair and orderly fashion. Protocol procedures sense
failuresin a station or faults in the medium.

The MAP/ TOP (Manufacturing Automation Protocols and Technical
and Office Protocols) Users Group started under the auspices of General
Motors and Boeing Information Systems and now has a membership of
many thousands of national and international corporations. The corpo-
rationsin this group have made a commitment to open systems that will
allow them to select the best products through standards, agreed to by
the group, that will meet their respective requirements. In particular,
MAP has standardized options from the |EEE token-passing bus
method for production floor LAN implementation, and TOP has stan-
dardized options from the IEEE CSMA/CD for office LAN imple-
mentations. These standards have aso been adopted by NIST for
governmentwide use under the title Government Open Systems Inter-
connections Profile (GOSIP).

The Electronics I ndustries Association has established three interface
standards, RS-232C, RS-422, and RS-423, which are frequently refer-
enced for digital communications. These standards specify the use of
multiple lines that interface the equipment at a station and the commu-
nication control equipment attached to the medium. RS-232C has been
the primary standard for several years for low-speed voltage-oriented
digital communications. RS-232C uses nonbalanced circuits sharing a
common ground wire which, because of their sensitivity to noise, limits
the bandwidth and length of the lines. RS-232C specifications call for a
maximum line length of about 250 ft at a bandwidth of 10 kHz. RS-423
also uses nonbalanced circuits but with individual ground wires which
allows higher limits to a maximum line length of about 400 ft at a
bandwidth of 100 kHz. RS-422 uses balanced circuits with individual
ground wires which alow line lengths up to 4000 ft at bandwidths of
100 kHz.

The common carriers who offer WAN communication services
through their public networks have also developed packet-switching net-
works for public use. Packet switching transmits datain a purely digital
format, which, when embellished, can replace the common circuit-
switching technology used in analog communications such as voice. A
packet is a fixed-sized block of digital data with embedded control
information. The network serves to deliver the packets to their destina-
tion in an efficient and reliable manner.

CCITT has developed a set of standards, called X.25, for the three
bottom SO layers, to interface the public packet-switching networks.
One of the set, named the X .21 standard, serves as areplacement to the
EIA standards (RS-232C, RS-422, and RS-423) with fewer intercon-
necting lines whereby an expanded number of functions can be selected
by coded digital means. When the equipment at the local site does not
support the X.25 protocol, then a protocol converter interface, caled a
packet assembler/disassembler (PAD), properly structures the data for
transmission over public packet-switching networks. While the upper
four layers are not addressed by this interface, it is understood that
end-to-end communication can take place only when the protocols be-
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tween the layers at source and destination points agree or are made to
conform through protocol converters.

RELATIONAL DATABASE TECHNOLOGY

Design Concepts

As computer hardware has evolved from small working memories and
tape storage to large working memories and large disk storage, so has
database technology moved from accessing and processing of asingle,
sequential fileto that of multiple, random-accessfiles. A relational data-
base can be defined as an organized collection of interconnected tables
or records. The records appear like the flat files of older technology. In
each record the information is in columns (fields) which identify attri-
butes, and rows (tuples) which list particular instances of the attributes.
One column (or more), known as the primary key, identifies each row.
Obviously, the primary key must be unique for each row.

If the dataisto be handled in an efficient and orderly way, the records
cannot be organized in a helter-skelter fashion such as simply transport-
ing existing flat files into relational tables. To avoid problemsin main-
taining and using the database, redundancy should be eliminated by
storing each fact at only one place so that, when making additions or
deletions, one need not worry about duplicates throughout the database.
This goal can be realized by organizing the records into what is known
as the third normal form. A record is in the third normal form if and
only if al nonkey attributes are mutually independent and fully depen-
dent on the primary key.

The advantages of relational databases, assuming proper normaliza-
tion, are:

Each fact can be stored exactly once.

Theintegrity of the dataresideslocally, whereit is generated and can
best be managed.

The tables can be physically distributed yet interconnected.

Each user can be given his’her own private view of the database
without altering its physical structure.

New applications involving only a part of the total database can be
developed independently.

The system can be automated to find the best path through the data-
base for the specified data.

Each table can be used in many applications by employing simple
operators without having to transfer and manipul ate data superfluous to
the application.

A large, comprehensive system can evolve from phased design of
local systems.

New tables can be added without corrupting everyone's view of the
data.

The data in each table can be protected differently for each user
(read-only, write-only).

The tables can be made inaccessible to all users who do not have the
right to know.

Table 2.2.6 Relational Database Operators
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Relational Database Operators

A database system contains the structured collection of data, an on-line
catalog and dictionary of dataitems, and facilities to access and use the
data. The system allows users to:

Add new tables

Remove old tables

Insert new data into existing tables

Delete data from existing tables

Retrieve selected data

Manipulate data extracted from severa tables
Create specialized reports

As might be expected, these systems include a large collection of
operators and built-in functions in addition to those normally used in
mathematics. Because of the similarity between database tables and
mathematical sets, special set-like operators have been developed to
manipulate tabled Table 2.2.8 lists eight typical table operators. The list
of functions would normally also include such things as count, sum,
average, find the maximum in a column, and find the minimum in a
column. A rich collection of report generators offers powerful and flex-
ible capabilitiesfor producing tabular listings, text, graphics (bar charts,
pie charts, point plots, and continuous plots), pictorial displays, and
voice output.

SOFTWARE ENGINEERING

Programming Goals

Software engineering encompasses the methodologies for analyzing
program requirements and for structuring programs to meet the require-
ments over their life cycle. The objectives are to produce programs that
are:

Well documented

Easily read

Proved correct

Bug- (error-) free
Modifiable and maintainable
Implementable in modules

Control-Flow Diagrams

A control-flow diagram, popularly known as a flowchart, depicts al
possible sequences of a program during execution by representing the
control logic as a directed graph with labeled nodes. The theory asso-
ciated with flowcharts has been refined so that programs can be struc-
tured to meet the above objectives. Without loss of generality, the nodes
in a flowchart can be limited to the three types shown in[E1g. Z2.6] A
function may be either a transformer which converts input data values
into output data values or a transducer which converts that data’ s mor-
phological form. A label placed in the rectangle specifies the function’s
action. A predicate node acts to bifurcate the path through the node. A

Operator Input Output

Select A table and a condition A table of al tuples that satisfy the given condition

Project A table and an attribute A table of al values in the specified attribute

Union Two tables A table of all unique tuples appearing in one table or the other

Intersection Two tables A table of al tuples the given tables have in common

Difference Two tables A table of all tuples appearing in the first and not in the second
table

Join Two tables and a condition A table concatenating the attributes of the tuples that satisfy
the given condition

Divide A table, two attributes, and A table of values appearing in one specified attribute of the

list of values

given table when the table has tuples that satisfies every

value in the list in the other given attribute
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question labels the diamond representing a predicate node. The answer
to the question yields a binary value: 0 or 1, yes or no, ON or OFF. One
of the output lines is selected accordingly. A connector servesto rejoin
separated paths. Normally the circle representing a connector does not
contain alabel, but when the flowchart is used to document a computer
program it may be convenient to label the connector.

Structured programming theory models all programs by their flow-
charts by placing minor restrictions on their lines and nodes. Specifi-
cally, aflowchart is called aproper program if it has precisely oneinput
and one output line, and for every node there exists a path from theinput
line through the node to the output line. The restriction prohibiting
multiple input or output lines can easily be circumvented by funneling
the lines through collector nodes. The other restriction simply discards
unwanted program structures, since a program with a path that does not
reach the output may not terminate.

! Y
!

Function
Fig. 2.2.6 Basic flowchart nodes.

()<

Predicate Collector

Not al proper programs exhibit the desirable properties of meeting
the objectives listed abové Figure 2. 2.7 listsagroup of proper programs
whose graphs have been identified as being well -structured and useful
as basic building blocks for creating other well-structured programs.
The name assigned to each of these graph suggests the process
each represents. CASE is just a convenient way of showing multiple
IFTHENEL SES more compactly.

2o g

BLOCK REPEATUNTIL WHILEDO

e e e | |
Q<_| |_.Q._|
IFTHEN IFTHENELSE CASE

Fig. 2.2.7 Basic flowchart building blocks.

The structured programming theorem states: any proper program can
be reconfigured to an equivalent program producing the same transfor-
mation of the data by a flowchart containing at most the graphs labeled
BLOCK, IFTHENELSE, and REPEATUNTIL.

Every proper program has one input line and one output line like a
function block. The synthesis of more complex well-structured pro-

grams s achieved by substituting any of the three building blocks men-
tioned in the theorem for a function node. In fact, any of the basic
building blocks would do just as well. A program so structured will
appear as a block of function nodes with a top-down control flow.
Because of the top-down structure, the arrow points are not normally
shown.

[Elgure Z.Z8illustrates the expansion of a program to find the roots of
ax? + bx + ¢ = 0. The flowchart is shown in three levels of detail.

| Quadratic

Input a, b, ¢

Caculate and
report roots

| Linear

[d<o [d=0 ld>o0
Report (2) Report (2) Report (2) Report (1) Report (0)
complex roots: coincident roots: distinct roots: single root: no roots
Real = —b/2a | |Roots = —b/2a Rootl Root
Imaginary = (—b + vd)y/2a =—c/b
= v=di2a Root2
=(-b - Vd)2a

| 2

Q
Fig. 2.2.8 Illustration of a control-flow diagram.

Data-Flow Diagrams

Data-flow diagrams structure the actions of a program into a network by
tracking the data as it passes through the program. They depict the
interworkings of asystem by the processes performing the work and the
communication between the processes. Data-flow diagrams have
proved valuable in analyzing existing or new systems to determine the
system requirements and in designing systems to meet those require-
mentsCEgore 2279 shows the four basic elements used to construct a
data-flow diagram. The roles each element plays in the system are:

Rectangular boxes lie outside the system and represent the input data
sources or output data sinks that communicate with the system. The
sources and sinks are also called terminators.

Circles (bubbles) represent processes or actions performed by the
system in accomplishing its function.

_>©:

Terminator Data flow
Fig. 2.2.9 Dataflow diagram elements.

Process File
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Twin parallel lines represent a data file used to collect and store data
from among the processes or from a process over time which can be
later recalled.

Arcs or vectors connect the other elements and represent data flows.

A label placed with each element makes clear its role in the system.
Thecircles contain verbs and the other elements contain nouns. Thearcs
tie the system together. An arc between a terminator and a process
represents input to or output from the system. An arc between two
processes represents output from one process which isinput to the other.
An arc between a process and a file represents data gathered by the
process and stored in the file, or retrieval of data from the file.

Analysis starts with a contextual view of the system studied in its
environment. The contextual view gives the name of the system, the
collection of terminators, and the data flows that provide the system
inputs and outputs; al accompanied by a statement of the system objec-
tive. Details on the terminators and data they provide may also be de-
scribed by text, but often the picture suffices. It is understood that the
form of the input and output may not be dictated by the designer since
they often involve organizations outside the system. Typical inputs in
industrial systems include customer orders, payment checks, purchase

orders, requests for quotations, etc[Figure 2210 illustrates a context
diagram for arepair shop.
gives many more operational details showing how the

parts of the system interact to accomplish the system’s objectives. The

—Call >

~<€— Appointment

—— Complaint —————>» .
Repair sho

<€— |nvoice —< P P
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~€— Receipt

Invoice —>»

Customer
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Service
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Schedule
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services
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Customer Billing
info. info.
N/
Office records
Schedule Repglr
services

— Complaint

Examine | Test Perform |\  Repair Repair
product order tests order product
Test list / Repairs
re Parts order

Test results
History \ %
\

Product chart Parts inventory

(b) Behavorial view

Fig. 2.2.10 Illustration of a data-flow diagram.
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designer can restructure the internal processors and the formats of the
data flows. The bubbles in a diagram can be broken down into further
details to be shown in another data-flow diagram. This can be repeated
level after level until the processes become manageable and under-
standable. To complete the system description, each bubble in the data-
flow charts is accompanied by a control-flow diagram or its equivalent
to describe the algorithm used to accomplish the actions and a data
dictionary describing the items in the data flows and in the databases.

The techniques of data-flow diagrams lend themselves beautifully to
the analysis of existing systems. In a complex system it would be un-
usual for anindividual to know all the details, but all system participants
know their respective roles: what they receive, whence they receiveit,
what they do, what they send, and where they send it. By carefully
structuring interviews, the complete system can be synthesized to any
desired level of detail. Moreover, each system component can be veri-
fied because what is sent from one process must be received by another
and what is received by a process must be used by the process. To
automate the total system or parts of the system, control bubbles con-
taining transition diagrams can be implemented to control the timing of
the processes.

SOFTWARE SYSTEMS

Software Techniques

Two basic operations form the heart of nonnumerical techniques such as
those found in handling large database tables. One basic operation,
called sorting, collates the information in atable by reordering theitems
by their key into a specified order. The other basic operation, called
sear ching, seeks to find items in a table whose keys have the same or
related value as agiven argument. The search operation may or may not
be successful, but in either case further operations follow the search
(e.g., retrieve, insert, replace).

One must recogni ze that computers cannot do mathematics. They can
perform afew basic operations such as the four rules of arithmetic, but
even in this case the operations are approximations. In fact, computers
represent long integers, long rationals, and al the irrational numbers
like 7 and e only as approximations. While computer arithmetic and the
computer representation of numbers exceed the precision one com-
monly uses, the size of problems solved in a computer and the number
of operations that are performed can produce misleading results with
large computational errors.

Since the computer can handle only the four rules of arithmetic,
complex functions must be approximated by polynomials or rational
fractions. A rational fraction is a polynomial divided by another poly-
nomial. From these curve-fitting techniques, a variety of weighted-
average formulas can be developed to approximate the definite integral
of a function. These formulas are used in the procedures for solving
differential and integral equations. While differentiation can also be
expressed by these techniques, it is seldom used, since the errors be-
come unacceptable.

Taking advantage of the machine’ s speed and accuracy, one can solve
nonlinear equations by trial and error. For example, one can use the
Newton-Raphson method to find successive approximations to the roots
of an equation. The computer is programmed to perform the calcula-
tions needed in each iteration and to terminate the procedure when it has
converged on aroot. More sophisticated routines can be found in the
libraries for finding real, multiple, and complex roots of an equation.

Matrix techniques have been commercially programmed into libraries
of prepared modules which can be integrated into programs written in
al popular engineering programming languages. These libraries not
only contain excellent routines for solving simultaneous linear equations
and the eigenvalues of characteristic matrices, but also embody proce-
dures guarding against ill-conditioned matrices which lead to large
computational errors.

Special matrix techniques called relaxation are used to solve partial
differential equations on the computer. A typical problem requires set-
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ting up agrid of hundreds or thousands of points to describe the region
and expressing the equation at each point by finite-difference methods.
The resulting matrix is very sparse with a regular pattern of nonzero
elements. The form of the matrix circumvents the need for handling
large arrays of numbersin the computer and avoids problemsin compu-
tational accuracy normally found in dealing with extremely large ma-
trices.

The computer is an excellent tool for handling optimization problems.
Mathematically these problems are formulated as problems in finding
the maximum or minimum of a nonlinear equation. The excellent tech-
niques that have been developed can dea effectively with the unique
complexities these problems have, such as saddle points which repre-
sent both a maximum and a minimum.

Another class of problems, caled linear programming problems, is
characterized by the linear constraint of many variables which plot into
regions outlined by multidimensional planes (in the two-dimensional
case, theregion is a plane enclosed by straight lines). Techniques have
been developed to find the optimal solution of the variables satisfying
some given value or cost objective function. The solution to the problem
proceeds by searching the corners of the region defined by the con-
straining equations to find points which represent minimum points of a
cost function or maximum points of a value function.

The best known and most widely used techniques for solving statisti-
cal problems are those of linear statistics. These involve the techniques
of least squares (otherwise known as regression). For some problems
these techniques do not suffice, and more specialized techniques in-
volving nonlinear statistics must be used, albeit a solution may not
exist.

Artificial intelligence (Al) isthe study and implementation of programs
that model knowledge systems and exhibit aspects of intelligence in
problem solving. Typical areas of application are in learning, linguis-
tics, pattern recognition, decision making, and theorem proving. In Al,
the computer serves to search a collection of heuristic rules to find a
match with a current situation and to make inferences or otherwise
reorganize knowledge into more useful forms. Al techniques have been
utilized to build sophisticated systems, called expert systems, to aid in
producing a timely response in problems involving a large number of
complex conditions.

Operating Systems

The operating system provides the services that support the needs that
computer programs have in common during execution. Any list of ser-
vices would include those needed to configure the resources that will be
made available to the users, to attach hardware units (e.g., memory
modules, storage devices, coprocessors, and peripheral devices) to the
existing configuration, to detach modules, to assign default parameters
to the hardware and software units, to set up and schedule users' tasks so
as to resolve conflicts and optimize throughput, to control system input
and output devices, to protect the system and users' programs from
themselves and from each other, to manage storage space in the file
devices, to protect file devices from faults and illegal use, to account for
the use of the system, and to handle in an orderly way any exception
which might be encountered during program execution. A well-
designed operating system provides these services in a user-friendly
environment and yet makes itself and the computer operating staff
transparent to the user.

The design of acomputer operating system depends on the number of
users which can be expected. The focus of single-user systemsrelieson
the monitor to provide a user-friendly system through dialog menus
with icons, mouse operations, and templdis_Taple Z.P.7 lists some pop-
ular operating systemsfor PCs by their trademark names. The design of
amultiuser system attemptsto give each user theimpression that he/she
is the lone user of the system. In addition to providing the accoutre-
ments of a user-friendly system, the design focuses on the order of
processing the jobs in an attempt to treat each user in afair and equitable
fashion. The basic issues for determining the order of processing center
on the selection of job queues: the number of queues (asimple queue or

amix of queues), the method used in scheduling the jobs in the queue
(first come—first served, shortest job next, or explicit priorities), and the
internal handling of the jobs in the queue (batch, multiprogramming, or
timesharing).

Table 2.2.7 Some Popular PC
Operating Systems

Trademark Supplier

DOS Microsoft Corp.

Windows Microsoft Corp.

0s/2 IBM Corp.

Unix Unix Systems Laboratory Inc.
Sun/OS Sun Microsystems Inc.
Macintosh Apple Computer Inc.

Batch operating systems process jobs in a sequential order. Jobs are
collected in batches and entered into the computer with individua job
instructions which the operating system interprets to set up the job, to
allocate resources needed, to process the job, and to provide the input/
output. The operating system processes each job to completion in the
order it appears in the batch. In the event a malfunction or fault occurs
during execution, the operating system terminates the job currently
being executed in an orderly fashion before initiating the next job in
sequence.

Multiprogramming operating systems process several jobs concur-
rently. A job may be initiated any time memory and other resources
which it needs become available. Many jobs may be simultaneously
activein the system and maintained in apartial state of completion. The
order of execution depends on the priority assignments. Jobs are exe-
cuted to completion or put into a wait state until a pending request for
service has been setisfied. It should be noted that, while the CPU can
execute only a single program at any moment of time, operations with
peripheral and storage devices can occur concurrently.

Timesharing operating systems process jobsin away similar to multi-
programming except for the added feature that each job is given ashort
slice of the available time to complete its tasks. If the job has not been
completed within its time slice or if it requests a service from an exter-
nal device, it is put into await status and control passes to the next job.
Effectively, the length of the time slice determines the priority of
the job.

Program Preparation Facilities

For the user, the crucial part of alanguage system isthe grammar which
specifies the language syntax and semantics that give the symbols and
rules used to compose acceptable statements and the meaning asso-
ciated with the statements. Compared to natural languages, computer
languages are more precise, have asimpler structure, and have a clearer
syntax and semantics that allows no ambiguities in what one writes or
what one means. For a program to be executed, it must eventually be
trandlated into a sequence of basic machine instructions.

The statements written by a user must first be put on some machine-
readable medium or typed on akeyboard for entry into the machine. The
translator (compiler) program accepts these statements as input and
translates (compiles) them into asequence of basic machineinstructions
which form the executable version of the program. After that, the trans-
lated (compiled) program can be run.

During the execution of a program, a run-time program must also be
present in the memory. The purpose of the run-time system is to per-
form services that the user’ s program may require. For example, in case
of a program fault, the run-time system will identify the error and
terminate the program in an orderly manner.

Some language systems do not have a separate compiler to produce
machine-executabl e instructions. Instead the run-time system interprets
the statements as written, converts them into a pseudo-code, and exe-
cutes the coded version.
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Commonly needed functions are made available as prepared mod-
ules, either as an integral part of the language or from stored libraries.
The documentation of these functions must be studied carefully to as-
sure correct selection and utilization.

Languages may be classified as procedure-oriented or problem-
oriented. With procedure-oriented languages, all the detailed steps must
be specified by the user. These languages are usually characterized as
being more verbose than problem-oriented languages, but are more
flexible and can deal with a wider range of problems. Problem-oriented
languages deal with more specialized classes of problems. The elements
of problem-oriented languages are usually familiar to a knowledgeable
professional and so are easier to learn and use than procedure-oriented
languages.

The most elementary form of a procedure-oriented languageis called
an assembler. This class of language permits a computer program to be
written directly in basic computer instructions using mnemonic opera-
tors and symbolic operands. The assembler’s translator converts these
instructions into machine-usable form.

A further refinement of an assembler permits the use of macros. A
macro identifies, by an assigned name and alist of formal parameters, a
sequence of computer instructions written in the assembler’ sformat and
stored in its subroutine library. The macroassembler includes these
macro instructions in the trandated program along with the instructions
written by the programmer.

Besides these basic language systems there exists a large variety of
other language systems. These are called higher-level language systems
since they permit more complex statements than are permitted by a
macroassembler. They can also be used on machines produced by dif-
ferent manufacturers or on machines with different instruction reper-
toires.

In the field of business programming, COBOL (COmmon Business-
Oriented Language) is the most popular. This language facilitates the
handling of the complex information files found in business and data-
processing problems.

Another example of an application area supported by specia lan-
guages is in the field of problems involving strings of text. SNOBOL
and LISP exemplify these string-manipulation or list-processing lan-
guages. Applications vary from generating concordances to sophisti-
cated symbolic formula manipulation.

One language of historical valueis ALGOL 60. It isalandmark in the
theoretical development of computer languages. It was designed and
standardized by an international committee whose goal was to formu-
late a language suitable for publishing computer algorithms. Itsimpor-
tance lies in the many language features it introduced which are now
common in the more recent languages which succeeded it and in the
scientific notation which was used to defineiit.

FORTRAN (FORmula TRANSslator) was one of the first languages
catering to the engineering and scientific community where algebraic
formulas specify the computations used within the program. It has been
standardized several times. The current version isSFORTRAN 90 (ANSI
X3.198-1992). Each version has expanded the language features and
has removed undesirable features which lead to unstructured programs.
The new features include new data types like Boolean and character
strings, additional operators and functions, and new statements that
support programs conforming to the requirements for structured pro-
gramming.

The PASCAL language couples the ideas of ALGOL 60 to those of
structured programming. By allowing only appropriate statement types,
it guarantees that any program written in the language will be well-
structured. In addition, the language introduced new data types and
allows programmers to define new complex data structures based on the
primitive data types.

The definition of the Ada language was sponsored by the Department
of Defense as an all-encompassing language for the development and
maintenance of very large, software-intensive projects over their life
cycle. While it meets software engineering objectives in amanner simi-
lar to Pascal, it has many other features not normally found in pro-
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gramming languages. Like other attempts to formulate very large al-
inclusive languages, it is difficult to learn and has not found popular
favor. Nevertheless, its many unique features make it especialy valu-
able in implementing programs which cannot be easily implemented
in other languages (e.g., programs for parallel computations in em-
bedded compuiters).

By edict, subsets of Ada were forbidden. Modula-2 was designed to
retain the inherent simplicity of PASCAL but include many of the ad-
vanced features of Ada. Its advantage lies in implementing large pro-
jects involving many programmers. The compilers for this language
have rigorous interface cross-checking mechanismsto avoid poor inter-
faces between components. Another troublesome areais in the implicit
use of global data. Modula-2 retains the Ada facilities that allow pro-
grammers to share data and avoids incorrectly modifying the data in
different program units.

The C language was developed by AT&T's Bell Laboratories and
subsequently standardized by ANSI. It has a reputation for translating
programs into compact and fast code, and for alowing program seg-
ments to be precompiled. Its strength rests in the flexibility of the lan-
guage; for example, it permits statements from other languages to be
included in-line in a C program and it offers the largest selection of
operators that mirror those available in an assembly language. Because
of itsflexibility, programs written in C can become unreadable.

Problem-oriented languages have been devel oped for every discipline.
A language might deal with a specialized application within an engi-
neering field, or it might deal with awhole gamut of applications cover-
ing one or more fields.

A class of problem-oriented languages that deserves special mention
are those for solving problems in discrete smulation. GPSS, Simscript,
and SIMULA are among the most popular. A simulation (another word
for model) of a system is used whenever it is desirable to watch a
succession of many interrelated events or when there is interplay be-
tween the system under study and outside forces. Examples are prob-
lems in human-machine interaction and in the modeling of business
systems. Typica human-machine problems are the servicing of auto-
matic equipment by a crew of operators (to study crew size and assign-
ments, typicaly), or responses by shared maintenance crews to equip-
ment subject to unpredictable (random) breakdown. Business models
often involve transportation and warehousing studies. A business model
could also study the interactions between a business and the rest of the
economy such as competitive buying in araw materials market or com-
petitive marketing of products by manufacturers.

Physical or chemical systems may also be modeled. For example, to
study the application of automatic control values in pipelines, the com-
puter model consists of the control system, the valves, the piping sys-
tem, and the fluid properties. Such a model, when tested, can indicate
whether fluid hammer will occur or whether valve action isfast enough.
It can also be used to predict pressure and temperature conditionsin the
fluid when subject to the valve actions.

Another class of problem-oriented languages makes the computer
directly accessible to the specialist with little additional training. Thisis
achieved by permitting the user to describe problemsto the computer in
termsthat arefamiliar in the discipline of the problemand for which the
language is designed. Two approaches are usedFigures 2.2.11] and
2.2.12 illustrate these.

One approach sets up the computer program directly from the mathe-
matical equations. In fact, problems were formulated in this manner in
the past, where analog computers were especially well-suited. Anyone
familiar with analog computers finds the transitions to these languages
easy [Figure ZZ. T illustrates this approach using the MIMIC language
to write the program for the solution of the initial-value problem:

My + 2y + Ky=1 and y(0) =y(0) =0

MIMIC is adigita simulation language used to solve systems of ordi-
nary differential equations. The key step in setting up the solution isto
isolate the highest-order derivative on the left-hand side of the equation
and equate it to an expression composed of the remaining terms. For the
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MIMIC statements Explanation

DY2=(1-Z=*DYl—-K=*Y)M Differential equation to be solved.
“#"" isused for multiplication and
DY2, DY1, and Y are defined
mnemonics for y, y, and y.

DY1 = INT(DY2,0.) INT(A,B) is used to perform

Y = INT(DY1,0.) integration. It forms successive

values of B + [Adt.

FIN(T,10.) T is areserved name representing the
independent variable. This statement
will terminate execution when T =
10.

CON(M,K,Z) Vaues must be furnished for M, K,
and Z. An input with these values
must appear after the END card.

PLO(T,DY2) Three point plots are produced on the

PLO(T,DY1) line printer; ¥, y, and y vs. t.

PLO(T,Y)

END Necessary last statement.

Fig. 2.2.11 Illustration of aMIMIC program.

equation above, this resultsin:
y=(1- 2y - Ky)/M

The highest-order derivative is derived by equating it to the expression
on the right-hand side of the eguation. The lower-order derivatives in
the expression are generated successively by integrating the highest-
order derivative. The MIMIC language permits the user to write these
statements in a format closely resembling mathematical notation.

The alternate approach used in problem-oriented languages permits
the setup to be described to the computer directly from the block dia-
gram of the physical systemEgure 27717 illustrates this approach

A node is assigned to:

|

K1 = 40. « ground
Dl1=5 * any mass
M1 = 10. « point between two elements
Rl =732 The prefix of element name speci-
fiesitstype; i.e., M for mass, K for
spring, D for damper, and R for
force.
(@
SCEPTRE statements Explanation
MECHANICAL
DESCRIPTION
ELEMENTS Specifies the elements and their
M1,1 - 3=10. position in the diagram using the
K1,1 -2 = 40. node numbers.
D1,2-3=.5
R1,1-3=1732
OUTPUT Results are listed on the line printer.
SV1,vM1 Prefix on the element specifies the
quantity to be listed; Sfor
displacement, V for velocity.
RUN CONTROL TIME is reserved name for
STOPTIME = 10. independent variable. Statement will
terminate execution of program when
TIME is equal to or greater than 10.
END Necessary statement.

(b)
Fig. 2.2.12 lllustration of SCEPTRE program. (a) Problem to be solved; (b)
SCEPTRE program.

using the SCEPTRE language. SCEPTRE statements are written under
headings and subheadings which identify the type of component being
described. This language may be applied to network problems of elec-
trical digital-logic elements, mechanical-trandation or rotational ele-
ments, or transfer-function blocks. The translator for this language de-
velops and sets up the equations directly from this description of the
network diagram, and so relieves the user from the mathematical
aspects of the problem.

Application Packages

An application package differs from a language in that its components
have been organized to solve problemsin a particular application rather
than to create the components themselves. The user interacts with the
package by initiating the operations and providing the data. From an
operational view, packages are built to minimize or simplify interac-
tions with the users by using a menu to initiate operations and entering
the data through templets.

Perhaps the most widely used application package is the word proces-
sor. The objective of aword processor isto allow users to compose text
in an electronically stored format which can be corrected or modified,
and from which a hard copy can be produced on demand. Besides the
basic typewriter operations, it contains functions to manipulate text in
blocks or columns, to create headers and footers, to number pages, to
find and correct words, to format the datain avariety of ways, to create
labels, and to merge blocks of text together. The better word processors
have an integrated dictionary, a spelling checker to find and correct
misspelled words, a grammar checker to find grammatical errors, and a
thesaurus. They often have facilities to prepare complex mathematical
equations and to include and manipulate graphical artwork, including
editing color pictures. When enough page- and document formatting
capability has been added, the programs are known as desktop publishing
programs.

One of the programs that contributed to the early acceptance of per-
sonal computers was the spread sheet program. These programs simulate
the common spread sheet with its columns and rows of interrelated data.
The computerized approach has the advantage that the equations are
stored so that the results of achange in data can be shown quickly after
any change is made in the data. Modern spread sheet programs have
many capabilities, including the ability to obtain information from other
spread sheets, to produce a variety of reports, and to prepare equations
which have complicated logical aspects.

Toolsfor project management have been organized into commercially
available application packages. The objectives of these programs arein
the planning, scheduling, and controlling the time-oriented activities
describing the projects. There are two basically similar techniques used
in these packages. One, called CPM (critical path method), assumes that
the project activities can be estimated deterministically. The other,
called PERT (project evaluation and review technology), assumes that
the activities can be estimated probabilistically. Both take into account
such items as the requirement that certain tasks cannot start before the
completion of other tasks. The concepts of critical path and float are
crucial, especially in scheduling the large projects that these programs
are used for. In both cases tools are included for estimating project
schedules, estimating resources needed and their schedules, and repre-
senting the project activities in graphical as well as tabular form.

A major use of the digital computer isin datareduction, dataanalysis,
and visualization of data. In installations where large amounts of data
are recorded and kept, it is often advisable to reduce the amount of data
by ganging the data together, by averaging the data with numerical
filtersto reduce the amount of noise, or by converting the datato amore
appropriate form for storage, analysis, visualization, or future process-
ing. This application has been expanded to produce systems for evalua-
tion, automatic testing, and fault diagnosis by coupling the data acquisi-
tion equipment to special peripherals that automatically measure and
record the data in a digital format and report the data as meaningful,
nonphysically measurable parameters associated with a mathematical
model.
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Computer-aided design/computer-aided manufacturing (CAD/CAM)
is an integrated collection of software tools which have been designed
to make way for innovative methods of fabricating customized products
to meet customer demands. The goa of modern manufacturing is to
process orders placed for different products sooner and faster, and to
fabricate them without retooling. CAD has the tools for prototyping a
design and setting up the factory for production. Working within a
framework of agile manufacturing facilities that features automated ve-
hicles, handling robots, assembly robots, and welding and painting
robots, the factory setsitself up for production under computer control.
Production starts with the receipt of an order on which customers may
pick options such as color, size, shapes, and features. Manufacturing
proceeds with greater flexibility, quality, and efficiency in producing an
increased number of products with a reduced workforce. Effectively,
CAD/CAM provides for the ultimate just-in-time (JI T) manufacturing.
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Two other types of application package illustrate the versatility of
data management techniques. One type ties on-line equipment to a
computer for collecting real-time data from the production lines. An
animated, pictorial display of the production lines forms the heart of the
system, allowing supervisionin acentral control station to continuously
track operations. The other type collects time-series data from the
various activitiesin an enterprise. It assistsin what is known as manage-
ment by exception. It is especially useful where the detailed data is so
voluminous that it is feasible to examineit only in summaries. The data
elements are processed and stored in various levels of detail in a seam-
less fashion. The system stores the reduced data and connects it to the
detailed data from which it was derived. The application package allows
management, through simple computer operations, to detect a problem
at a higher level and to locate and pinpoint its cause through examina-
tion of successively lower levels.
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